These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17225954)

  • 1. The sugar model: autocatalytic activity of the triose-ammonia reaction.
    Weber AL
    Orig Life Evol Biosph; 2007 Apr; 37(2):105-11. PubMed ID: 17225954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sugar model: catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-l-lysine contained in a dialyzer.
    Weber AL
    Orig Life Evol Biosph; 2001 Jun; 31(3):231-40. PubMed ID: 11434102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar-driven prebiotic synthesis of 3,5(6)-dimethylpyrazin-2-one: a possible nucleobase of a primitive replication process.
    Weber AL
    Orig Life Evol Biosph; 2008 Aug; 38(4):279-92. PubMed ID: 18581252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar-driven prebiotic synthesis of ammonia from nitrite.
    Weber AL
    Orig Life Evol Biosph; 2010 Jun; 40(3):245-52. PubMed ID: 20213158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sugar model: catalysis by amines and amino acid products.
    Weber AL
    Orig Life Evol Biosph; 2001; 31(1-2):71-86. PubMed ID: 11296525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis.
    Coggins AJ; Powner MW
    Nat Chem; 2017 Apr; 9(4):310-317. PubMed ID: 28338685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia.
    Weber AL
    Orig Life Evol Biosph; 1998 Jun; 28(3):259-70. PubMed ID: 9611766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and partial characterization of four fluorophores formed by nonenzymatic browning of methylglyoxal and glutamine-derived ammonia.
    Niquet C; Pilard S; Mathiron D; Tessier FJ
    Ann N Y Acad Sci; 2008 Apr; 1126():158-61. PubMed ID: 18448810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of thermally treated α-dicarbonyl compounds.
    Pfeifer YV; Haase PT; Kroh LW
    J Agric Food Chem; 2013 Mar; 61(12):3090-6. PubMed ID: 23432453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prebiotic synthesis of simple sugars by an interstellar formose reaction.
    Jalbout AF
    Orig Life Evol Biosph; 2008 Dec; 38(6):489-97. PubMed ID: 18998238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylglyoxal-derived beta-carbolines formed from tryptophan and its derivates in the Maillard reaction.
    Nemet I; Varga-Defterdarović L
    Amino Acids; 2007 Feb; 32(2):291-3. PubMed ID: 16729192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of 4(5)-methylimidazole and its precursors, α-dicarbonyl compounds, in Maillard model systems.
    Jang HW; Jiang Y; Hengel M; Shibamoto T
    J Agric Food Chem; 2013 Jul; 61(28):6865-72. PubMed ID: 23796138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeolite-catalyzed isomerization of triose sugars.
    Taarning E; Saravanamurugan S; Holm MS; Xiong J; West RM; Christensen CH
    ChemSusChem; 2009 Jul; 2(7):625-7. PubMed ID: 19562790
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I--reaction mechanism.
    Martins SI; Marcelis AT; van Boekel MA
    Carbohydr Res; 2003 Jul; 338(16):1651-63. PubMed ID: 12873421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.
    Nashalian O; Yaylayan VA
    Food Chem; 2016 Apr; 197(Pt A):489-95. PubMed ID: 26616979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free glutamine as a major precursor of brown products and fluorophores in Maillard reaction systems.
    Niquet C; Tessier FJ
    Amino Acids; 2007 Jul; 33(1):165-71. PubMed ID: 17006601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of an autocatalytic reaction cycle in neutral medium for synthesis of life-sustaining sugars.
    Tabata H; Chikatani G; Nishijima H; Harada T; Miyake R; Kato S; Igarashi K; Mukouyama Y; Shirai S; Waki M; Hase Y; Nakanishi S
    Chem Sci; 2023 Nov; 14(46):13475-13484. PubMed ID: 38033894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics.
    Li L; Liu Y
    J Hazard Mater; 2009 Jan; 161(2-3):1010-6. PubMed ID: 18511189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to α-hydroxy-γ-butyrolactone.
    Yamaguchi S; Motokura K; Sakamoto Y; Miyaji A; Baba T
    Chem Commun (Camb); 2014 May; 50(35):4600-2. PubMed ID: 24668044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.