These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17225954)

  • 21. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal.
    Nagaraj RH; Shipanova IN; Faust FM
    J Biol Chem; 1996 Aug; 271(32):19338-45. PubMed ID: 8702619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of pH and amino acids on the formation of methylglyoxal in a glucose-amino acid model system.
    Yu P; Xu XB; Yu SJ
    J Sci Food Agric; 2017 Aug; 97(10):3159-3165. PubMed ID: 27885683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trioses and related substances: tools for the study of pancreatic beta-cell function.
    Best L; Thornalley PJ
    Biochem Pharmacol; 1999 Mar; 57(6):583-8. PubMed ID: 10037441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism and kinetics of the catalytic oxidation of aqueous ammonia to molecular nitrogen.
    Lee DK
    Environ Sci Technol; 2003 Dec; 37(24):5745-9. PubMed ID: 14717189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Haloacetol phosphates. Potential active-site reagents for aldolase, triose phosphate isomerase, and glycerophosphate dehydrogenase. I. Preparation and properties.
    Hartman FC
    Biochemistry; 1970 Apr; 9(8):1776-82. PubMed ID: 5439038
    [No Abstract]   [Full Text] [Related]  

  • 26. Ammonia formation by the reduction of nitrite/nitrate by FeS: ammonia formation under acidic conditions.
    Summers DP
    Orig Life Evol Biosph; 2005 Aug; 35(4):299-312. PubMed ID: 16228644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct.
    Shipanova IN; Glomb MA; Nagaraj RH
    Arch Biochem Biophys; 1997 Aug; 344(1):29-36. PubMed ID: 9244378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth: Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers.
    Wollrab E; Scherer S; Aubriet F; Carré V; Carlomagno T; Codutti L; Ott A
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):149-69. PubMed ID: 26508401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion.
    Desloover J; Woldeyohannis AA; Verstraete W; Boon N; Rabaey K
    Environ Sci Technol; 2012 Nov; 46(21):12209-16. PubMed ID: 23050591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.
    Ma XJ; Gao JY; Tong P; Li X; Chen HB
    J Sci Food Agric; 2017 Dec; 97(15):5168-5175. PubMed ID: 28436030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Study of the Effect of Glucosamine and Free Ammonium on 4-Methylimidazole Formation.
    Yu P; Xu XB; Yu SJ
    J Agric Food Chem; 2015 Sep; 63(36):8031-6. PubMed ID: 26312411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of organic microspherules in sugar-ammonia reactions.
    Weber AL
    Orig Life Evol Biosph; 2005 Dec; 35(6):523-36. PubMed ID: 16254690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A New Perspective on the Maillard Reaction and the Origin of Life.
    Bernhardt HS; Tate WP
    J Mol Evol; 2021 Dec; 89(9-10):594-597. PubMed ID: 34633476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term behaviours of Autocatalytic Sets.
    Ravoni A
    J Theor Biol; 2021 Nov; 529():110860. PubMed ID: 34389361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DFT studies of the conversion of four mesylate esters during reaction with ammonia.
    Nowacki A; Sikora K; Dmochowska B; Wiśniewski A
    J Mol Model; 2013 Aug; 19(8):3015-26. PubMed ID: 23571822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epicatechin carbonyl-trapping reactions in aqueous maillard systems: Identification and structural elucidation.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2006 Sep; 54(19):7311-8. PubMed ID: 16968099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hidden biochemical fossils reveal an evolutionary trajectory for glycolysis in the prebiotic era.
    Kalapos MP; de Bari L
    FEBS Lett; 2022 Aug; 596(15):1955-1968. PubMed ID: 35599367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal.
    Zhu H; Poojary MM; Andersen ML; Lund MN
    Food Chem; 2020 Jul; 319():126500. PubMed ID: 32146288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems.
    Hordijk W; Kauffman SA; Steel M
    Int J Mol Sci; 2011; 12(5):3085-101. PubMed ID: 21686171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of Hexamethylenetetramine (HMT) from HCHO and NH3--Relevance to Prebiotic Chemistry and B3LYP Consideration.
    Zeffiro A; Lazzaroni S; Merli D; Profumo A; Buttafava A; Serpone N; Dondi D
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):223-31. PubMed ID: 26680445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.