BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1722653)

  • 1. Ion channel sensors for glutamic acid.
    Minami H; Sugawara M; Odashima K; Umezawa Y; Uto M; Michaelis EK; Kuwana T
    Anal Chem; 1991 Dec; 63(23):2787-95. PubMed ID: 1722653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical evaluation of chemical selectivity of glutamate receptor ion channel proteins with a multi-channel sensor.
    Sugawara M; Hirano A; Rehák M; Nakanishi J; Kawai K; Sato H; Umezawa Y
    Biosens Bioelectron; 1997; 12(5):425-39. PubMed ID: 9228734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of agonist selectivity for the NMDA receptor ion channel in bilayer lipid membranes based on integrated single-channel currents.
    Hirano A; Sugawara M; Umezawa Y; Uchino S; Nakajima-Iijima S
    Biosens Bioelectron; 2000 Jun; 15(3-4):173-81. PubMed ID: 11286335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride channels gated by extrajunctional glutamate receptors (H-receptors) on locust leg muscle.
    Dudel J; Franke C; Hatt H; Usherwood PN
    Brain Res; 1989 Mar; 481(2):215-20. PubMed ID: 2470466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and comparison of ion permeation and agonist selectivities for N-methyl-d-aspartate receptor channels with different subunit compositions in bilayer lipid membranes based on integrated single-channel currents.
    Hirano A; Wakabayashi M; Sugawara M; Uchino S; Nakajima-Iijima S
    Anal Biochem; 2000 Aug; 283(2):258-65. PubMed ID: 10906247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of ion flow through recombinant glutamate receptor channels.
    Verdoorn TA; Burnashev N; Monyer H; Seeburg PH; Sakmann B
    Science; 1991 Jun; 252(5013):1715-8. PubMed ID: 1710829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/D-glucose cotransporter based bilayer lipid membrane sensor for D-glucose.
    Sugao N; Sugawara M; Minami H; Uto M; Umezawa Y
    Anal Chem; 1993 Feb; 65(4):363-9. PubMed ID: 8439009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise and single channels activated by excitatory amino acids in rat cerebellar granule neurones.
    Cull-Candy SG; Howe JR; Ogden DC
    J Physiol; 1988 Jun; 400():189-222. PubMed ID: 2458453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells.
    Häusser M; Roth A
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):77-95. PubMed ID: 9174996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptors and enzymes for medical sensing of L-glutamate.
    Hirano A; Sugawara M
    Mini Rev Med Chem; 2006 Oct; 6(10):1091-100. PubMed ID: 17073709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of L-glutamate on cultured insect neurones.
    Horseman BG; Seymour C; Bermudez I; Beadle DJ
    Neurosci Lett; 1988 Feb; 85(1):65-70. PubMed ID: 2452387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions.
    Favero G; Campanella L; Cavallo S; D'Annibale A; Perrella M; Mattei E; Ferri T
    J Am Chem Soc; 2005 Jun; 127(22):8103-11. PubMed ID: 15926837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships in diphtheria toxin channels: III. Residues which affect the cis pH dependence of channel conductance.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):45-57. PubMed ID: 7516434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arachidonic acid-induced channel- and carrier-type ion transport across planar bilayer lipid membranes.
    Hirano A; Namatame Y; Wakaizumi E; Matsuno Y; Sugawara M
    Anal Sci; 2003 Feb; 19(2):191-7. PubMed ID: 12608744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel properties of the purified glutamate receptor from rat brain reconstituted in planar lipid bilayer membrane.
    Tashmukhamedov BA; Makhmudova EM
    Acta Biol Hung; 1999; 50(1-3):279-86. PubMed ID: 10574447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical study of ion channel behavior in incorporated poly L-glutamate bilayer lipid membranes.
    Tong Y; Wu Z; Han X; Wang E
    J Bioenerg Biomembr; 2002 Jun; 34(3):185-91. PubMed ID: 12171068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution in bilayer lipid membranes of the crab Potamon transcaspicum spider venom sensitive glutamate receptors.
    Tashmukhamedov BA; Makhmudova EM; Usmanov PB; Kazakov I
    Gen Physiol Biophys; 1985 Dec; 4(6):625-30. PubMed ID: 3002906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-synapse model cell for synaptic glutamate receptor (GluR)-based biosensing: strategy and engineering to maximize ligand-gated ion-flux achieving high signal-to-noise ratio.
    Tateishi A; Coleman SK; Migita S; Keinänen K; Haruyama T
    Sensors (Basel); 2012; 12(1):1035-41. PubMed ID: 22368509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Dependent properties of ion channels formed by N-terminally glutamate substituted gramicidin A in planar lipid bilayers.
    Chistyulin DK; Rokitskaya TI; Kovalchuk SI; Sorochkina AI; Firsov AM; Kotova EA; Antonenko YN
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):896-902. PubMed ID: 28188740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.