BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17226811)

  • 1. Fast and efficient screening system for new biomaterials in tissue engineering: a model for peripheral nerve regeneration.
    Bruns S; Stark Y; Wieland M; Stahl F; Kasper C; Scheper T
    J Biomed Mater Res A; 2007 Jun; 81(3):736-47. PubMed ID: 17226811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen biomaterial doped with colominic acid for cell culture applications with regard to peripheral nerve repair.
    Bruns S; Stark Y; Röker S; Wieland M; Dräger G; Kirschning A; Stahl F; Kasper C; Scheper T
    J Biotechnol; 2007 Sep; 131(3):335-45. PubMed ID: 17714819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on polysialic acid as a biomaterial for cell culture applications.
    Stark Y; Bruns S; Stahl F; Kasper C; Wesemann M; Grothe C; Scheper T
    J Biomed Mater Res A; 2008 Apr; 85(1):1-13. PubMed ID: 17618519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation.
    Nakajima M; Ishimuro T; Kato K; Ko IK; Hirata I; Arima Y; Iwata H
    Biomaterials; 2007 Feb; 28(6):1048-60. PubMed ID: 17081602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of cell responses to biomaterials.
    Yliperttula M; Chung BG; Navaladi A; Manbachi A; Urtti A
    Eur J Pharm Sci; 2008 Oct; 35(3):151-60. PubMed ID: 18586092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some properties of keratin biomaterials: kerateines.
    Hill P; Brantley H; Van Dyke M
    Biomaterials; 2010 Feb; 31(4):585-93. PubMed ID: 19822360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of Schwann cells with chitosan membranes and fibers in vitro.
    Yuan Y; Zhang P; Yang Y; Wang X; Gu X
    Biomaterials; 2004 Aug; 25(18):4273-8. PubMed ID: 15046917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth.
    Alvarez-Perez MA; Guarino V; Cirillo V; Ambrosio L
    Biomacromolecules; 2010 Sep; 11(9):2238-46. PubMed ID: 20690634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering.
    Neuss S; Apel C; Buttler P; Denecke B; Dhanasingh A; Ding X; Grafahrend D; Groger A; Hemmrich K; Herr A; Jahnen-Dechent W; Mastitskaya S; Perez-Bouza A; Rosewick S; Salber J; Wöltje M; Zenke M
    Biomaterials; 2008 Jan; 29(3):302-13. PubMed ID: 17935776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro.
    Su Y; Zeng BF; Zhang CQ; Zhang KG; Xie XT
    Brain Res; 2007 May; 1145():41-7. PubMed ID: 17367764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction.
    Simões MJ; Gärtner A; Shirosaki Y; Gil da Costa RM; Cortez PP; Gartnër F; Santos JD; Lopes MA; Geuna S; Varejão AS; Maurício AC
    Acta Med Port; 2011; 24(1):43-52. PubMed ID: 21672441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique.
    Schlie S; Ngezahayo A; Ovsianikov A; Fabian T; Kolb HA; Haferkamp H; Chichkov BN
    J Biomater Appl; 2007 Nov; 22(3):275-87. PubMed ID: 17494962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suspension-adapted Chinese hamster ovary-derived cells expressing green fluorescent protein as a screening tool for biomaterials.
    Engelhardt EM; Houis S; Gries T; Hilborn J; Adam M; Wurm FM
    Biotechnol Lett; 2009 Aug; 31(8):1143-9. PubMed ID: 19360389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.
    Shimizu K; Ito A; Honda H
    J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.