BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17226952)

  • 21. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes.
    Gudnason H; Dufva M; Duong Bang D; Wolff A
    Biotechniques; 2008 Sep; 45(3):261-71. PubMed ID: 18778250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A new approach to the problem of immobilizing oligonucleotides on carboxyl-containing nylon membranes for nucleic acid hybridization].
    Ivanovskaia MG; Kozlov IA; Naryshkin NA; Shabarova ZA
    Bioorg Khim; 1995 Jul; 21(7):535-8. PubMed ID: 7488269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel route for immobilization of oligonucleotides onto modified silica nanoparticles.
    Rao KS; Rani SU; Charyulu DK; Kumar KN; Lee BK; Lee HY; Kawai T
    Anal Chim Acta; 2006 Aug; 576(2):177-83. PubMed ID: 17723630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. S-(4,4'-Dimethoxytrityl)-3-mercaptopropionic acid, an efficient reagent for estimation of epoxy functionalities on microslides used for biochips.
    Mahajan S; Kumar P; Gupta KC
    Anal Biochem; 2006 Jun; 353(2):299-301. PubMed ID: 16564491
    [No Abstract]   [Full Text] [Related]  

  • 25. Metal ion CHElate-aSSisted LIGAtion (CHESS LIGA) for SNP detection on microarrays.
    Le TH; Oretskaya TS; Zatsepin TS
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4018-21. PubMed ID: 19574044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectrophotometric estimation of functional groups on microslides for preparation of biochips.
    Mahajan S; Garg A; Goel M; Kumar P; Gupta KC
    Anal Biochem; 2006 Apr; 351(2):273-81. PubMed ID: 16455035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Affinity capture-facilitated preparation of aequorin- oligonucleotide conjugates for rapid hybridization assays.
    Glynou K; Ioannou PC; Christopoulos TK
    Bioconjug Chem; 2003; 14(5):1024-9. PubMed ID: 13129407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligonucleotide hybridization and free-solution electrokinetic separation in a nanofluidic device.
    Huber DE; Markel ML; Pennathur S; Patel KD
    Lab Chip; 2009 Oct; 9(20):2933-40. PubMed ID: 19789746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2'-anthraquinone-conjugated oligonucleotide as an electrochemical probe for DNA mismatch.
    Kumamoto S; Watanabe M; Kawakami N; Nakamura M; Yamana K
    Bioconjug Chem; 2008 Jan; 19(1):65-9. PubMed ID: 17988077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient and versatile approach for the construction of oligonucleotide microarrays.
    Mahajan S; Kumar P; Gupta KC
    Bioorg Med Chem Lett; 2006 Nov; 16(21):5654-8. PubMed ID: 16934460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of oligonucleotide microarrays (biochip) using heterobifunctional reagents.
    Choithani J; Vaijayanthi B; Kumar P; Gupta KC
    Methods Mol Biol; 2007; 381():133-63. PubMed ID: 17984518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oligonucleotide microarrays with stem-loop probes: enhancing the hybridization of nucleic acids for sensitive analysis.
    Mahajan S; Swami A; Sethi D; Kumar P; Gupta KC
    Bioorg Med Chem Lett; 2008 Jun; 18(12):3585-8. PubMed ID: 18490158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides.
    Miao P; Liu L; Nie Y; Li G
    Biosens Bioelectron; 2009 Jul; 24(11):3347-51. PubMed ID: 19464867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR.
    Mondal S; Venkataraman V
    J Biochem Biophys Methods; 2007 Aug; 70(5):773-7. PubMed ID: 17570532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SNP genotyping of unpurified PCR products by sandwich-type affinity electrophoresis on a microchip with programmed autonomous solution filling.
    Inoue A; Han A; Makino K; Hosokawa K; Maeda M
    Lab Chip; 2009 Nov; 9(22):3297-302. PubMed ID: 19865739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering.
    Kumar Khanna V
    Biotechnol Adv; 2007; 25(1):85-98. PubMed ID: 17157471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotubes towards medicinal biochips.
    Tarakanov AO; Goncharova LB; Tarakanov YA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(1):1-10. PubMed ID: 20049826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new scheme of hybridization based on the Au(nano)-DNA modified glassy carbon electrode.
    Kang J; Li X; Wu G; Wang Z; Lu X
    Anal Biochem; 2007 May; 364(2):165-70. PubMed ID: 17395145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3'-immobilized probes with 2'-caps: synthesis of oligonucleotides with 2'-N-methyl-2'-(anthraquinone carboxamido)uridine residues.
    Al-Rawi S; Ahlborn C; Richert C
    Org Lett; 2005 Apr; 7(8):1569-72. PubMed ID: 15816754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different strategies of covalent attachment of oligonucleotide probe onto glass beads and the hybridization properties.
    Sheng H; Ye BC
    Appl Biochem Biotechnol; 2009 Jan; 152(1):54-65. PubMed ID: 18491234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.