These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1136 related articles for article (PubMed ID: 17227093)
21. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation. Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239 [TBL] [Abstract][Full Text] [Related]
22. Finite element and experimental cortex strains of the intact and implanted tibia. Completo A; Fonseca F; Simões JA J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906 [TBL] [Abstract][Full Text] [Related]
23. Apparent Young's modulus of human radius using inverse finite-element method. Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663 [TBL] [Abstract][Full Text] [Related]
24. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. Pahr DH; Zysset PK J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Li Z; Alonso JE; Kim JE; Davidson JS; Etheridge BS; Eberhardt AW Ann Biomed Eng; 2006 Sep; 34(9):1452-62. PubMed ID: 16897423 [TBL] [Abstract][Full Text] [Related]
26. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee. Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463 [TBL] [Abstract][Full Text] [Related]
27. The biomechanics of the T2 femoral nailing system: a comparison of synthetic femurs withfinite element analysis. Bougherara H; Zdero R; Miric M; Shah S; Hardisty M; Zalzal P; Schemitsch EH Proc Inst Mech Eng H; 2009 Apr; 223(3):303-14. PubMed ID: 19405436 [TBL] [Abstract][Full Text] [Related]
28. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523 [TBL] [Abstract][Full Text] [Related]
29. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type. Verhulp E; Van Rietbergen B; Muller R; Huiskes R Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833 [TBL] [Abstract][Full Text] [Related]
30. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Cheung G; Zalzal P; Bhandari M; Spelt JK; Papini M Med Eng Phys; 2004 Mar; 26(2):93-108. PubMed ID: 15036177 [TBL] [Abstract][Full Text] [Related]
31. Comparison of micro-level and continuum-level voxel models of the proximal femur. Verhulp E; van Rietbergen B; Huiskes R J Biomech; 2006; 39(16):2951-7. PubMed ID: 16359680 [TBL] [Abstract][Full Text] [Related]
32. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Yosibash Z; Tal D; Trabelsi N Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270 [TBL] [Abstract][Full Text] [Related]
33. Fatigue performance of composite analogue femur constructs under high activity loading. Chong AC; Friis EA; Ballard GP; Czuwala PJ; Cooke FW Ann Biomed Eng; 2007 Jul; 35(7):1196-205. PubMed ID: 17390224 [TBL] [Abstract][Full Text] [Related]
34. Biomechanical analysis of blade plate versus locking plate fixation for a proximal humerus fracture: comparison using cadaveric and synthetic humeri. Siffri PC; Peindl RD; Coley ER; Norton J; Connor PM; Kellam JF J Orthop Trauma; 2006 Sep; 20(8):547-54. PubMed ID: 16990726 [TBL] [Abstract][Full Text] [Related]
35. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. van Lenthe GH; Voide R; Boyd SK; Müller R Bone; 2008 Oct; 43(4):717-23. PubMed ID: 18639658 [TBL] [Abstract][Full Text] [Related]
36. Predicting Reduction in Torsional Strength by Concentric/Eccentric RIA Reaming Normal and Osteoporotic Long Bones (Femurs). Lowe JA; Crist BD; Pfeiffer F; Carson WL J Orthop Trauma; 2015 Oct; 29(10):e371-9. PubMed ID: 26402305 [TBL] [Abstract][Full Text] [Related]
37. A new approach to the design of internal fixation plates. Woo SL; Simon BR; Akeson WH; Gomez MA; Seguchi Y J Biomed Mater Res; 1983 May; 17(3):427-39. PubMed ID: 6863347 [TBL] [Abstract][Full Text] [Related]
38. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020 [TBL] [Abstract][Full Text] [Related]
39. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122 [TBL] [Abstract][Full Text] [Related]
40. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]