These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17227094)

  • 1. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture characterization of bone under mode II loading using the end loaded split test.
    Pereira FA; Morais JJ; Dourado N; de Moura MF; Dias MI
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1764-73. PubMed ID: 22098876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.
    Miles B; Kolos E; Walter WL; Appleyard R; Shi A; Li Q; Ruys AJ
    Med Eng Phys; 2015 Jun; 37(6):567-73. PubMed ID: 25937546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone fracture characterization under mixed-mode I+II loading using the single leg bending test.
    Pereira FA; de Moura MF; Dourado N; Morais JJ; Dias MI
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1331-9. PubMed ID: 24715503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions.
    Juszczyk MM; Cristofolini L; Viceconti M
    J Biomech; 2011 Aug; 44(12):2259-66. PubMed ID: 21722906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strains caused by daily loading might be responsible for delayed healing of an incomplete atypical femoral fracture.
    Gustafsson A; Schilcher J; Grassi L; Aspenberg P; Isaksson H
    Bone; 2016 Jul; 88():125-130. PubMed ID: 27113528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction.
    Nobakhti S; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Jan; 29():235-51. PubMed ID: 24113298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-field strain measurement and fracture analysis of rat femora in compression test.
    Amin Yavari S; van der Stok J; Weinans H; Zadpoor AA
    J Biomech; 2013 Apr; 46(7):1282-92. PubMed ID: 23510907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture Characterization of Human Cortical Bone Under Mode I Loading.
    Silva F; de Moura M; Dourado N; Xavier J; Pereira F; Morais J; Dias M; Lourenço P; Judas F
    J Biomech Eng; 2015 Dec; 137(12):121004. PubMed ID: 26502314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of cortical bone adaptation in a rat ulna: effect of frequency.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM
    Bone; 2012 Mar; 50(3):792-7. PubMed ID: 22210383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a balanced experimental-computational approach to understanding the mechanics of proximal femur fractures.
    Helgason B; Gilchrist S; Ariza O; Chak JD; Zheng G; Widmer RP; Ferguson SJ; Guy P; Cripton PA
    Med Eng Phys; 2014 Jun; 36(6):793-9. PubMed ID: 24629624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.