These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
484 related articles for article (PubMed ID: 17227102)
1. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms. Ma B; Lu J; Harbaugh RE; Raghavan ML J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102 [TBL] [Abstract][Full Text] [Related]
2. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress. Cornejo S; Guzmán A; Valencia A; Rodríguez J; Finol E Proc Inst Mech Eng H; 2014 Jan; 228(1):37-48. PubMed ID: 24280227 [TBL] [Abstract][Full Text] [Related]
3. Inflation of an artery leading to aneurysm formation and rupture. Ren JS Mol Cell Biomech; 2007 Mar; 4(1):55-66. PubMed ID: 17879771 [TBL] [Abstract][Full Text] [Related]
4. Spatial variations in wall thickness, material stiffness and initial shape affect wall stress and shape of intracranial aneurysms. Challa V; Han HC Neurol Res; 2007 Sep; 29(6):569-77. PubMed ID: 17535557 [TBL] [Abstract][Full Text] [Related]
5. Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth. Eriksson T; Kroon M; Holzapfel GA J Biomech Eng; 2009 Oct; 131(10):101010. PubMed ID: 19831480 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Gambaruto AM; Janela J; Moura A; Sequeira A Math Biosci Eng; 2011 Apr; 8(2):409-23. PubMed ID: 21631137 [TBL] [Abstract][Full Text] [Related]
7. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms. Fisher C; Rossmann JS J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. Doyle MG; Tavoularis S; Bourgault Y J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969 [TBL] [Abstract][Full Text] [Related]
10. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510 [TBL] [Abstract][Full Text] [Related]
15. Modeling of saccular aneurysm growth in a human middle cerebral artery. Kroon M; Holzapfel GA J Biomech Eng; 2008 Oct; 130(5):051012. PubMed ID: 19045519 [TBL] [Abstract][Full Text] [Related]
16. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Watton PN; Selimovic A; Raberger NB; Huang P; Holzapfel GA; Ventikos Y Biomech Model Mechanobiol; 2011 Feb; 10(1):109-32. PubMed ID: 20496095 [TBL] [Abstract][Full Text] [Related]
17. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104 [TBL] [Abstract][Full Text] [Related]
18. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Acevedo-Bolton G; Jou LD; Dispensa BP; Lawton MT; Higashida RT; Martin AJ; Young WL; Saloner D Neurosurgery; 2006 Aug; 59(2):E429-30; author reply E429-30. PubMed ID: 16883156 [TBL] [Abstract][Full Text] [Related]
19. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. Papaharilaou Y; Ekaterinaris JA; Manousaki E; Katsamouris AN J Biomech; 2007; 40(2):367-77. PubMed ID: 16500664 [TBL] [Abstract][Full Text] [Related]
20. Risk of aneurysmal rupture: the importance of neck orifice positioning-assessment using computational flow simulation. Ohshima T; Miyachi S; Hattori K; Takahashi I; Ishii K; Izumi T; Yoshida J Neurosurgery; 2008 Apr; 62(4):767-73; discussion 773-5. PubMed ID: 18496182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]