These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 17227139)

  • 1. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism.
    Nijhuis M; van Maarseveen NM; Lastere S; Schipper P; Coakley E; Glass B; Rovenska M; de Jong D; Chappey C; Goedegebuure IW; Heilek-Snyder G; Dulude D; Cammack N; Brakier-Gingras L; Konvalinka J; Parkin N; Kräusslich HG; Brun-Vezinet F; Boucher CA
    PLoS Med; 2007 Jan; 4(1):e36. PubMed ID: 17227139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy.
    Giandhari J; Basson AE; Sutherland K; Parry CM; Cane PA; Coovadia A; Kuhn L; Hunt G; Morris L
    Antimicrob Agents Chemother; 2016 Apr; 60(4):2248-56. PubMed ID: 26833162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human immunodeficiency virus type 1 protease cleavage site mutations associated with protease inhibitor cross-resistance selected by indinavir, ritonavir, and/or saquinavir.
    Côté HC; Brumme ZL; Harrigan PR
    J Virol; 2001 Jan; 75(2):589-94. PubMed ID: 11134271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atazanavir signature I50L resistance substitution accounts for unique phenotype of increased susceptibility to other protease inhibitors in a variety of human immunodeficiency virus type 1 genetic backbones.
    Weinheimer S; Discotto L; Friborg J; Yang H; Colonno R
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3816-24. PubMed ID: 16127058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of resistance in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects failing lopinavir- and ritonavir-based therapy: mutation patterns and baseline correlates.
    Mo H; King MS; King K; Molla A; Brun S; Kempf DJ
    J Virol; 2005 Mar; 79(6):3329-38. PubMed ID: 15731227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity.
    van Maarseveen NM; Andersson D; Lepšík M; Fun A; Schipper PJ; de Jong D; Boucher CA; Nijhuis M
    Retrovirology; 2012 Apr; 9():29. PubMed ID: 22462820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory mutations at the HIV cleavage sites p7/p1 and p1/p6-gag in therapy-naive and therapy-experienced patients.
    Verheyen J; Litau E; Sing T; Däumer M; Balduin M; Oette M; Fätkenheuer G; Rockstroh JK; Schuldenzucker U; Hoffmann D; Pfister H; Kaiser R
    Antivir Ther; 2006; 11(7):879-87. PubMed ID: 17302250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of Gag cleavage sites to protease mutations and to virological response in HIV-1 treated patients.
    Malet I; Roquebert B; Dalban C; Wirden M; Amellal B; Agher R; Simon A; Katlama C; Costagliola D; Calvez V; Marcelin AG
    J Infect; 2007 Apr; 54(4):367-74. PubMed ID: 16875739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of HIV type 1 protease, reverse transcriptase, cleavage site, and p6 mutations on the virological response to quadruple therapy with saquinavir, ritonavir, and two nucleoside analogs.
    Kaufmann GR; Suzuki K; Cunningham P; Mukaide M; Kondo M; Imai M; Zaunders J; Cooper DA
    AIDS Res Hum Retroviruses; 2001 Apr; 17(6):487-97. PubMed ID: 11350662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of gag genetic determinants on virological outcome to boosted lopinavir-containing regimen in HIV-2-infected patients.
    Larrouy L; Vivot A; Charpentier C; Bénard A; Visseaux B; Damond F; Matheron S; Chene G; Brun-Vezinet F; Descamps D;
    AIDS; 2013 Jan; 27(1):69-80. PubMed ID: 23018441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of HIV-1 protease mutations A71V/T and T74S on M89I/V-mediated protease inhibitor resistance in subtype G isolates.
    Gonzalez LM; Santos AF; Abecasis AB; Van Laethem K; Soares EA; Deforche K; Tanuri A; Camacho R; Vandamme AM; Soares MA
    J Antimicrob Chemother; 2008 Jun; 61(6):1201-4. PubMed ID: 18356151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.
    Dandache S; Coburn CA; Oliveira M; Allison TJ; Holloway MK; Wu JJ; Stranix BR; Panchal C; Wainberg MA; Vacca JP
    J Med Virol; 2008 Dec; 80(12):2053-63. PubMed ID: 19040279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors.
    Bally F; Martinez R; Peters S; Sudre P; Telenti A
    AIDS Res Hum Retroviruses; 2000 Sep; 16(13):1209-13. PubMed ID: 10957718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of gag mutations on selection of darunavir resistance mutations in HIV-1 protease.
    Lambert-Niclot S; Flandre P; Malet I; Canestri A; Soulié C; Tubiana R; Brunet C; Wirden M; Katlama C; Calvez V; Marcelin AG
    J Antimicrob Chemother; 2008 Nov; 62(5):905-8. PubMed ID: 18765410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistant minority species are rarely observed in patients on darunavir/ritonavir monotherapy.
    Lambert-Niclot S; Flandre P; Valantin MA; Peytavin G; Sayon S; Morand-Joubert L; Delaugerre C; Algarte-Genin M; Katlama C; Calvez V; Marcelin AG
    J Antimicrob Chemother; 2012 Jun; 67(6):1470-4. PubMed ID: 22396434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational patterns and correlated amino acid substitutions in the HIV-1 protease after virological failure to nelfinavir- and lopinavir/ritonavir-based treatments.
    Garriga C; Pérez-Elías MJ; Delgado R; Ruiz L; Nájera R; Pumarola T; Alonso-Socas Mdel M; García-Bujalance S; Menéndez-Arias L;
    J Med Virol; 2007 Nov; 79(11):1617-28. PubMed ID: 17854027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing prevalence of HIV-1 protease inhibitor-associated mutations correlates with long-term non-suppressive protease inhibitor treatment.
    Kagan RM; Cheung PK; Huard TK; Lewinski MA
    Antiviral Res; 2006 Aug; 71(1):42-52. PubMed ID: 16600392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virological response to darunavir/ritonavir-based regimens in antiretroviral-experienced patients (PREDIZISTA study).
    Pellegrin I; Wittkop L; Joubert LM; Neau D; Bollens D; Bonarek M; Girard PM; Fleury H; Winters B; Saux MC; Pellegrin JL; Thiébaut R; Breilh D;
    Antivir Ther; 2008; 13(2):271-9. PubMed ID: 18505178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.