BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 17227224)

  • 1. Are nonresorbing osteoclasts sources of bone anabolic activity?
    Karsdal MA; Martin TJ; Bollerslev J; Christiansen C; Henriksen K
    J Bone Miner Res; 2007 Apr; 22(4):487-94. PubMed ID: 17227224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoclasts secrete non-bone derived signals that induce bone formation.
    Karsdal MA; Neutzsky-Wulff AV; Dziegiel MH; Christiansen C; Henriksen K
    Biochem Biophys Res Commun; 2008 Feb; 366(2):483-8. PubMed ID: 18068671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation.
    Thudium CS; Moscatelli I; Flores C; Thomsen JS; Brüel A; Gudmann NS; Hauge EM; Karsdal MA; Richter J; Henriksen K
    Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local communication on and within bone controls bone remodeling.
    Henriksen K; Neutzsky-Wulff AV; Bonewald LF; Karsdal MA
    Bone; 2009 Jun; 44(6):1026-33. PubMed ID: 19345750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo.
    Henriksen K; Gram J; Høegh-Andersen P; Jemtland R; Ueland T; Dziegiel MH; Schaller S; Bollerslev J; Karsdal MA
    Am J Pathol; 2005 Nov; 167(5):1341-8. PubMed ID: 16251418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Severe developmental bone phenotype in ClC-7 deficient mice.
    Neutzsky-Wulff AV; Sims NA; Supanchart C; Kornak U; Felsenberg D; Poulton IJ; Martin TJ; Karsdal MA; Henriksen K
    Dev Biol; 2010 Aug; 344(2):1001-10. PubMed ID: 20599900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in osteoclast biology resulting from the study of osteopetrotic mutations.
    Segovia-Silvestre T; Neutzsky-Wulff AV; Sorensen MG; Christiansen C; Bollerslev J; Karsdal MA; Henriksen K
    Hum Genet; 2009 Jan; 124(6):561-77. PubMed ID: 18987890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying genes that regulate bone remodeling as potential therapeutic targets.
    Krane SM
    J Exp Med; 2005 Mar; 201(6):841-3. PubMed ID: 15781576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokines and growth factors in the regulation of bone remodeling.
    Mundy GR
    J Bone Miner Res; 1993 Dec; 8 Suppl 2():S505-10. PubMed ID: 7510095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice.
    Sakagami N; Amizuka N; Li M; Takeuchi K; Hoshino M; Nakamura M; Nozawa-Inoue K; Udagawa N; Maeda T
    Micron; 2005; 36(7-8):688-95. PubMed ID: 16182547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of mouse osteoclast K-Cl Co-transporter-1 and its role during bone resorption.
    Kajiya H; Okamoto F; Li JP; Nakao A; Okabe K
    J Bone Miner Res; 2006 Jul; 21(7):984-92. PubMed ID: 16813519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the bone phenotype in ClC-7-deficient mice.
    Neutzsky-Wulff AV; Karsdal MA; Henriksen K
    Calcif Tissue Int; 2008 Dec; 83(6):425-37. PubMed ID: 18958510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoclast-osteoblast communication.
    Matsuo K; Irie N
    Arch Biochem Biophys; 2008 May; 473(2):201-9. PubMed ID: 18406338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment.
    Schaller S; Henriksen K; Sørensen MG; Karsdal MA
    Drug News Perspect; 2005 Oct; 18(8):489-95. PubMed ID: 16391718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of CSF-1 in bone and bone marrow development.
    Cecchini MG; Hofstetter W; Halasy J; Wetterwald A; Felix R
    Mol Reprod Dev; 1997 Jan; 46(1):75-83; discussion 83-4. PubMed ID: 8981367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoclast-derived activity in the coupling of bone formation to resorption.
    Martin TJ; Sims NA
    Trends Mol Med; 2005 Feb; 11(2):76-81. PubMed ID: 15694870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of altered bone remodeling and retention of cement lines on bone quality in osteopetrotic aged c-Src-deficient mice.
    Nakayama H; Takakuda K; Matsumoto HN; Miyata A; Baba O; Tabata MJ; Ushiki T; Oda T; McKee MD; Takano Y
    Calcif Tissue Int; 2010 Feb; 86(2):172-83. PubMed ID: 20063091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the nonresorptive phenotype of osteoclast-like cells from patients with malignant osteopetrosis: a new approach to investigating pathogenesis.
    Flanagan AM; Sarma U; Steward CG; Vellodi A; Horton MA
    J Bone Miner Res; 2000 Feb; 15(2):352-60. PubMed ID: 10703938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone remodeling and macrophage differentiation in osteopetrosis (op) mutant mice defective in the production of macrophage colony-stimulating factor.
    Takatsuka H; Umezu H; Hasegawa G; Usuda H; Ebe Y; Naito M; Shultz LD
    J Submicrosc Cytol Pathol; 1998 Apr; 30(2):239-47. PubMed ID: 9648288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase.
    Kaji H; Sugimoto T; Kanatani M; Fukase M; Kumegawa M; Chihara K
    J Bone Miner Res; 1996 Jan; 11(1):62-71. PubMed ID: 8770698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.