BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 17227366)

  • 1. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm.
    Love AC; Andrews ME; Raff RA
    Evol Dev; 2007; 9(1):51-68. PubMed ID: 17227366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC; Lee AE; Andrews ME; Raff RA
    Evol Dev; 2008; 10(1):74-88. PubMed ID: 18184359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma.
    Wilson KA; Andrews ME; Raff RA
    Evol Dev; 2005; 7(5):401-15. PubMed ID: 16174034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma.
    Haag ES; Sly BJ; Andrews ME; Raff RA
    Dev Biol; 1999 Jul; 211(1):77-87. PubMed ID: 10373306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
    Zhou N; Wilson KA; Andrews ME; Kauffman JS; Raff RA
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):58-71. PubMed ID: 14984035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpHbox7, a new Abd-B class homeobox gene from the sea urchin Strongylocentrotus purpuratus: insights into the evolution of hox gene expression and function.
    Dobias SL; Zhao AZ; Tan H; Bell JR; Maxson R
    Dev Dyn; 1996 Dec; 207(4):450-60. PubMed ID: 8950519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Turner FR; Raff RA
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):609-22. PubMed ID: 18702078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major regulatory factors in the evolution of development: the roles of goosecoid and Msx in the evolution of the direct-developing sea urchin Heliocidaris erythrogramma.
    Wilson KA; Andrews ME; Rudolf Turner F; Raff RA
    Evol Dev; 2005; 7(5):416-28. PubMed ID: 16174035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    Yajima M
    Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma.
    Klueg KM; Harkey MA; Raff RA
    Dev Biol; 1997 Feb; 182(1):121-33. PubMed ID: 9028919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.
    Emlet RB
    Dev Biol; 1995 Feb; 167(2):405-15. PubMed ID: 7875367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of three mRNAs enriched in embryos of the direct-developing sea urchin Heliocidaris erythrogramma: evolution of larval ectoderm.
    Haag ES; Raff RA
    Dev Genes Evol; 1998 Jun; 208(4):188-204. PubMed ID: 9634485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension.
    Katow H
    Int J Dev Biol; 2008; 52(8):1077-88. PubMed ID: 18956340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression patterns of three Par-related genes in sea urchin embryos.
    Shiomi K; Yamaguchi M
    Gene Expr Patterns; 2008 May; 8(5):323-30. PubMed ID: 18316248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and expression of two matrix metalloproteinase genes during sea urchin development.
    Ingersoll EP; Pendharkar NC
    Gene Expr Patterns; 2005 Aug; 5(6):727-32. PubMed ID: 15963766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae.
    Zito F; Koop D; Byrne M; Matranga V
    Dev Growth Differ; 2015 Sep; 57(7):507-14. PubMed ID: 26108341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modularity and dissociation in the evolution of gene expression territories in development.
    Raff RA; Sly BJ
    Evol Dev; 2000; 2(2):102-13. PubMed ID: 11258388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo.
    Poustka AJ; Kühn A; Radosavljevic V; Wellenreuther R; Lehrach H; Panopoulou G
    Evol Dev; 2004; 6(4):227-36. PubMed ID: 15230963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.