These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17227436)

  • 1. Agmatine transport into spinal nerve terminals is modulated by polyamine analogs.
    Goracke-Postle CJ; Overland AC; Stone LS; Fairbanks CA
    J Neurochem; 2007 Jan; 100(1):132-41. PubMed ID: 17227436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium- and capsaicin-induced release of agmatine from spinal nerve terminals.
    Goracke-Postle CJ; Overland AC; Riedl MS; Stone LS; Fairbanks CA
    J Neurochem; 2007 Sep; 102(6):1738-1748. PubMed ID: 17539920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ornithine decarboxylase activity and polyamine transport by agmatine in rat pulmonary artery endothelial cells.
    Babál P; Ruchko M; Campbell CC; Gilmour SP; Mitchell JL; Olson JW; Gillespie MN
    J Pharmacol Exp Ther; 2001 Feb; 296(2):372-7. PubMed ID: 11160620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of polyamine transport in rat aortic smooth muscle cells.
    Toursarkissian B; Endean ED; Aziz SM
    J Surg Res; 1994 Sep; 57(3):401-7. PubMed ID: 8072288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of tritiated agmatine from spinal synaptosomes.
    Goracke-Postle CJ; Nguyen HO; Stone LS; Fairbanks CA
    Neuroreport; 2006 Jan; 17(1):13-7. PubMed ID: 16361942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 6-NO(2)-norepinephrine increases norepinephrine release and inhibits norepinephrine uptake in rat spinal synaptosomes.
    Li X; Rose G; Chiari A; Pan HL; Tobin JR; Eisenach JC
    J Pharmacol Exp Ther; 2000 Mar; 292(3):895-9. PubMed ID: 10688602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamine transport, accumulation, and release in brain.
    Masuko T; Kusama-Eguchi K; Sakata K; Kusama T; Chaki S; Okuyama S; Williams K; Kashiwagi K; Igarashi K
    J Neurochem; 2003 Feb; 84(3):610-7. PubMed ID: 12558981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism and function in animal tissues of agmatine, a biogenic amine formed from arginine.
    Grillo MA; Colombatto S
    Amino Acids; 2004 Feb; 26(1):3-8. PubMed ID: 14752610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of agmatine into rat brain synaptosomes: possible role of cation channels.
    Sastre M; Regunathan S; Reis DJ
    J Neurochem; 1997 Dec; 69(6):2421-6. PubMed ID: 9375674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica.
    Hummel I; Couée I; El Amrani A; Martin-Tanguy J; Hennion F
    J Exp Bot; 2002 Jun; 53(373):1463-73. PubMed ID: 12021294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1.
    Chou HT; Kwon DH; Hegazy M; Lu CD
    J Bacteriol; 2008 Mar; 190(6):1966-75. PubMed ID: 18192388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between agmatine and polyamine uptake pathways in rat pulmonary artery endothelial cells.
    Babál P; Ruchko M; Olson JW; Gillespie MN
    Gen Pharmacol; 2000 Apr; 34(4):255-61. PubMed ID: 11282219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).
    Hung KL; Wang CC; Huang CY; Wang SJ
    Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamines: fundamental characters in chemistry and biology.
    Agostinelli E; Marques MP; Calheiros R; Gil FP; Tempera G; Viceconte N; Battaglia V; Grancara S; Toninello A
    Amino Acids; 2010 Feb; 38(2):393-403. PubMed ID: 20013011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter.
    Reis DJ; Regunathan S
    Ann N Y Acad Sci; 1999 Jun; 881():65-80. PubMed ID: 10415899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of urea synthesis by agmatine in the perfused liver: studies with 15N.
    Nissim I; Horyn O; Daikhin Y; Nissim I; Lazarow A; Yudkoff M
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1123-34. PubMed ID: 12388162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine transport system mediates agmatine transport in mammalian cells.
    Satriano J; Isome M; Casero RA; Thomson SC; Blantz RC
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C329-34. PubMed ID: 11401856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agmatine transport in brain mitochondria: a different mechanism from that in liver mitochondria.
    Battaglia V; Grancara S; Mancon M; Cravanzola C; Colombatto S; Grillo MA; Tempera G; Agostinelli E; Toninello A
    Amino Acids; 2010 Feb; 38(2):423-30. PubMed ID: 19997762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel agmatine analogue, gamma-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels.
    Singh S; Jhingran A; Sharma A; Simonian AR; Soininen P; Vepsalainen J; Khomutov AR; Madhubala R
    Biochem Biophys Res Commun; 2008 Oct; 375(1):168-72. PubMed ID: 18692480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.
    Higashi K; Imamura M; Fudo S; Uemura T; Saiki R; Hoshino T; Toida T; Kashiwagi K; Igarashi K
    PLoS One; 2014; 9(7):e102234. PubMed ID: 25019617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.