These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 1722759)

  • 1. Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth.
    Jhaveri S; Edwards MA; Schneider GE
    Exp Brain Res; 1991; 87(2):371-82. PubMed ID: 1722759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets.
    Bhide PG; Frost DO
    J Neurosci; 1991 Feb; 11(2):485-504. PubMed ID: 1992013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optic tract in embryonic hamsters: fasciculation, defasciculation, and other rearrangements of retinal axons.
    Jhaveri S; Erzurumlu RS; Schneider GE
    Vis Neurosci; 1996; 13(2):359-74. PubMed ID: 8737287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster.
    Lyckman AW; Moya KL; Confaloni A; Jhaveri S
    J Comp Neurol; 2000 Jul; 423(1):40-51. PubMed ID: 10861535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic determinants of retinal axon collateralization and arborization patterns.
    Bhide PG; Frost DO
    J Comp Neurol; 1999 Aug; 411(1):119-29. PubMed ID: 10404111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse.
    Godement P; Salaün J; Imbert M
    J Comp Neurol; 1984 Dec; 230(4):552-75. PubMed ID: 6520251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical localization of GAP-43 in the developing hamster retinofugal pathway.
    Moya KL; Jhaveri S; Schneider GE; Benowitz LI
    J Comp Neurol; 1989 Oct; 288(1):51-8. PubMed ID: 2794137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental shift of synaptic vesicle protein 2 from axons to terminals in the primary visual projection of the hamster.
    Confaloni A; Lyckman AW; Moya KL
    Neuroscience; 1997 Apr; 77(4):1225-36. PubMed ID: 9130800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenatal development of the optic projection in albino and hooded rats.
    Bunt SM; Lund RD; Land PW
    Brain Res; 1983 Jan; 282(2):149-68. PubMed ID: 6831237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axon trajectories and pattern of terminal arborization during the prenatal development of the cat's retinogeniculate pathway.
    Sretavan DW; Shatz CJ
    J Comp Neurol; 1987 Jan; 255(3):386-400. PubMed ID: 3819020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of single retinofugal axon arbors in normal and β2 knock-out mice.
    Dhande OS; Hua EW; Guh E; Yeh J; Bhatt S; Zhang Y; Ruthazer ES; Feller MB; Crair MC
    J Neurosci; 2011 Mar; 31(9):3384-99. PubMed ID: 21368050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the axonal cell adhesion molecules axonin-1 and Ng-CAM during the development of the chick retinotectal system.
    Rager G; Morino P; Schnitzer J; Sonderegger P
    J Comp Neurol; 1996 Feb; 365(4):594-609. PubMed ID: 8742305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of morphologically different retinal axon terminals in the hamster dorsal lateral geniculate nucleus.
    Erzurumlu RS; Jhaveri S; Schneider GE
    Brain Res; 1988 Sep; 461(1):175-81. PubMed ID: 2465068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The postnatal development of retinocollicular projections in normal hamsters and in hamsters following neonatal monocular enucleation: a horseradish peroxidase tracing study.
    Woo HH; Jen LS; So KF
    Brain Res; 1985 May; 352(1):1-13. PubMed ID: 4005612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient retinal axon collaterals to visual and somatosensory thalamus in neonatal hamsters.
    Langdon RB; Frost DO
    J Comp Neurol; 1991 Aug; 310(2):200-14. PubMed ID: 1955582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal changes in arborization patterns of murine retinocollicular axons.
    Sachs GM; Jacobson M; Caviness VS
    J Comp Neurol; 1986 Apr; 246(3):395-408. PubMed ID: 3700722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in the pattern of retinal projections in pigmented and albino rabbits.
    Gayer NS; Horsburgh GM; Dreher B
    Brain Res Dev Brain Res; 1989 Nov; 50(1):33-54. PubMed ID: 2582607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study.
    Frost DO
    J Comp Neurol; 1986 Oct; 252(1):95-105. PubMed ID: 3793977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.