These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 1722759)

  • 21. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axonal arborization in the developing chick retinotectal system.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1987 Jul; 261(1):155-64. PubMed ID: 3624542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maturation of projections from occipital cortex to the ventrolateral geniculate and superior colliculus in postnatal hamsters.
    Ramirez JJ; Jhaveri S; Hahm JO; Schneider GE
    Brain Res Dev Brain Res; 1990 Aug; 55(1):1-9. PubMed ID: 1698573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons.
    Chen DF; Jhaveri S; Schneider GE
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7287-91. PubMed ID: 7638182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The principle of "conservation of total axonal arborizations": massive compensatory sprouting in the hamster subcortical visual system after early tectal lesions.
    Sabel BA; Schneider GE
    Exp Brain Res; 1988; 73(3):505-18. PubMed ID: 3224660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limited topographic specificity in the targeting and branching of mammalian retinal axons.
    Simon DK; O'Leary DD
    Dev Biol; 1990 Jan; 137(1):125-34. PubMed ID: 1688537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of nitric oxide in the development of retinal projections.
    Vercelli A; Garbossa D; Repici M; Biasiol S; Jhaveri S
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):489-98. PubMed ID: 11729994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in rapidly transported proteins associated with development of abnormal projections in the diencephalon.
    Moya KL; Benowitz LI; Sabel BA; Schneider GE
    Brain Res; 1992 Jul; 586(2):265-72. PubMed ID: 1381651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Target-specific morphology of retinal axon arbors in the adult hamster.
    Ling C; Schneider GE; Jhaveri S
    Vis Neurosci; 1998; 15(3):559-79. PubMed ID: 9685208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus.
    Sretavan DW; Shatz CJ
    J Neurosci; 1986 Jan; 6(1):234-51. PubMed ID: 3944621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Target-controlled differentiation of axon terminals and synaptic organization.
    Campbell G; Frost DO
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6929-33. PubMed ID: 2443913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regenerated retinal ganglion cell axons can form well-differentiated synapses in the superior colliculus of adult hamsters.
    Carter DA; Bray GM; Aguayo AJ
    J Neurosci; 1989 Nov; 9(11):4042-50. PubMed ID: 2479728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions.
    Sretavan DW; Shatz CJ
    J Neurosci; 1986 Apr; 6(4):990-1003. PubMed ID: 3701418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
    Cogen J; Cohen-Cory S
    J Neurobiol; 2000 Nov; 45(2):120-33. PubMed ID: 11018773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcellular retrograde labeling of radial glial cells with WGA-HRP and DiI in neonatal rat and hamster.
    Kageyama GH; Robertson RT
    Glia; 1993 Sep; 9(1):70-81. PubMed ID: 7503953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NOS inhibition during postnatal development leads to increased ipsilateral retinocollicular and retinogeniculate projections in rats.
    Vercelli A; Garbossa D; Biasiol S; Repici M; Jhaveri S
    Eur J Neurosci; 2000 Feb; 12(2):473-90. PubMed ID: 10712628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway.
    Lin L; Taylor JS; Chan SO
    J Comp Neurol; 2002 Sep; 451(1):22-32. PubMed ID: 12209838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The normal and abnormal postnatal development of retinogeniculate projections in golden hamsters: an anterograde horseradish peroxidase tracing study.
    So KF; Woo HH; Jen LS
    Brain Res; 1984 Feb; 314(2):191-205. PubMed ID: 6704748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural analysis of fiber organization during development.
    Rager G
    Prog Brain Res; 1983; 58():313-9. PubMed ID: 6195691
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.