BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 17227840)

  • 1. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae.
    Chabes A; Stillman B
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1183-8. PubMed ID: 17227840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase.
    Chabes A; Georgieva B; Domkin V; Zhao X; Rothstein R; Thelander L
    Cell; 2003 Feb; 112(3):391-401. PubMed ID: 12581528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Checkpoint deficient rad53-11 yeast cannot accumulate dNTPs in response to DNA damage.
    Koc A; Merrill GF
    Biochem Biophys Res Commun; 2007 Feb; 353(2):527-30. PubMed ID: 17188244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint.
    Kumar D; Viberg J; Nilsson AK; Chabes A
    Nucleic Acids Res; 2010 Jul; 38(12):3975-83. PubMed ID: 20215435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1.
    Zhao X; Rothstein R
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3746-51. PubMed ID: 11904430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools.
    Tsaponina O; Barsoum E; Aström SU; Chabes A
    PLoS Genet; 2011 May; 7(5):e1002061. PubMed ID: 21573136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dNTP pools determine fork progression and origin usage under replication stress.
    Poli J; Tsaponina O; Crabbé L; Keszthelyi A; Pantesco V; Chabes A; Lengronne A; Pasero P
    EMBO J; 2012 Feb; 31(4):883-94. PubMed ID: 22234185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools.
    Koç A; Wheeler LJ; Mathews CK; Merrill GF
    J Biol Chem; 2004 Jan; 279(1):223-30. PubMed ID: 14573610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
    Williams LN; Marjavaara L; Knowels GM; Schultz EM; Fox EJ; Chabes A; Herr AJ
    Proc Natl Acad Sci U S A; 2015 May; 112(19):E2457-66. PubMed ID: 25827226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells.
    Håkansson P; Hofer A; Thelander L
    J Biol Chem; 2006 Mar; 281(12):7834-41. PubMed ID: 16436374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance.
    Schmidt TT; Sharma S; Reyes GX; Gries K; Gross M; Zhao B; Yuan JH; Wade R; Chabes A; Hombauer H
    Nucleic Acids Res; 2019 Jan; 47(1):237-252. PubMed ID: 30462295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats.
    Li X; Jin X; Sharma S; Liu X; Zhang J; Niu Y; Li J; Li Z; Zhang J; Cao Q; Hou W; Du LL; Liu B; Lou H
    PLoS Genet; 2019 Aug; 15(8):e1008136. PubMed ID: 31381575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase.
    Elledge SJ; Davis RW
    Genes Dev; 1990 May; 4(5):740-51. PubMed ID: 2199320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans.
    Jung KW; Kwon S; Jung JH; Bahn YS
    Microbiol Spectr; 2022 Aug; 10(4):e0104422. PubMed ID: 35736239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage.
    Sabouri N; Viberg J; Goyal DK; Johansson E; Chabes A
    Nucleic Acids Res; 2008 Oct; 36(17):5660-7. PubMed ID: 18772226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae.
    Grossmann KF; Brown JC; Moses RE
    Mutat Res; 1999 May; 434(1):29-39. PubMed ID: 10377946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae.
    Gibson DG; Bell SP; Aparicio OM
    Genes Cells; 2006 Jun; 11(6):557-73. PubMed ID: 16716188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mec1 Is Activated at the Onset of Normal S Phase by Low-dNTP Pools Impeding DNA Replication.
    Forey R; Poveda A; Sharma S; Barthe A; Padioleau I; Renard C; Lambert R; Skrzypczak M; Ginalski K; Lengronne A; Chabes A; Pardo B; Pasero P
    Mol Cell; 2020 May; 78(3):396-410.e4. PubMed ID: 32169162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction by adozelesin and hydroxyurea of origin recognition complex-dependent DNA damage and DNA replication checkpoints in Saccharomyces cerevisiae.
    Weinberger M; Trabold PA; Lu M; Sharma K; Huberman JA; Burhans WC
    J Biol Chem; 1999 Dec; 274(50):35975-84. PubMed ID: 10585487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in cellular metabolism triggered by
    Schmidt TT; Reyes G; Gries K; Ceylan CÜ; Sharma S; Meurer M; Knop M; Chabes A; Hombauer H
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4442-E4451. PubMed ID: 28416670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.