BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 1722815)

  • 1. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools.
    Saxild HH; Nygaard P
    J Gen Microbiol; 1991 Oct; 137(10):2387-94. PubMed ID: 1722815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual control of the gua operon of Escherichia coli K12 by adenine and guanine nucleotides.
    Mehra RK; Drabble WT
    J Gen Microbiol; 1981 Mar; 123(1):27-37. PubMed ID: 6119351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis.
    Saxild HH; Nygaard P
    Mol Gen Genet; 1988 Jan; 211(1):160-7. PubMed ID: 3125411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL).
    Johansen LE; Nygaard P; Lassen C; Agersø Y; Saxild HH
    J Bacteriol; 2003 Sep; 185(17):5200-9. PubMed ID: 12923093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis.
    Ebbole DJ; Zalkin H
    J Biol Chem; 1987 Jun; 262(17):8274-87. PubMed ID: 3036807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide mutations in purA gene and pur operon promoter discovered in guanosine- and inosine-producing Bacillus subtilis strains.
    Qian J; Cai X; Chu J; Zhuang Y; Zhang S
    Biotechnol Lett; 2006 Jun; 28(12):937-41. PubMed ID: 16786280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP.
    Mäntsälä P; Zalkin H
    J Bacteriol; 1992 Mar; 174(6):1883-90. PubMed ID: 1312531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism.
    Christiansen LC; Schou S; Nygaard P; Saxild HH
    J Bacteriol; 1997 Apr; 179(8):2540-50. PubMed ID: 9098051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production.
    Asahara T; Mori Y; Zakataeva NP; Livshits VA; Yoshida K; Matsuno K
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2195-207. PubMed ID: 20524113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis.
    Shi T; Wang Y; Wang Z; Wang G; Liu D; Fu J; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():101. PubMed ID: 25023436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the Bacillus subtilis pur operon repressor.
    Weng M; Nagy PL; Zalkin H
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7455-9. PubMed ID: 7638212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.
    Wang X; Wang G; Li X; Fu J; Chen T; Wang Z; Zhao X
    J Biotechnol; 2016 Aug; 231():115-121. PubMed ID: 27234879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenylosuccinate lyase of Bacillus subtilis regulates the activity of the glutamyl-tRNA synthetase.
    Gendron N; Breton R; Champagne N; Lapointe J
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5389-92. PubMed ID: 1608947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in the Bacillus subtilis purine repressor that perturb PRPP effector function in vitro and in vivo.
    Weng M; Zalkin H
    Curr Microbiol; 2000 Jul; 41(1):56-9. PubMed ID: 10919400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii.
    Jiménez A; Santos MA; Pompejus M; Revuelta JL
    Appl Environ Microbiol; 2005 Oct; 71(10):5743-51. PubMed ID: 16204483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo.
    Kofoed EM; Yan D; Katakam AK; Reichelt M; Lin B; Kim J; Park S; Date SV; Monk IR; Xu M; Austin CD; Maurer T; Tan MW
    J Bacteriol; 2016 Jul; 198(14):2001-2015. PubMed ID: 27161118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size.
    Nygaard P; Saxild HH
    J Bacteriol; 2005 Jan; 187(2):791-4. PubMed ID: 15629952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of Bacillus subtilis genomic lacZ fusions induced during partial purine starvation.
    Saxild HH; Jensen CL; Hubrechts P; Hammer K
    J Bacteriol; 1994 Jan; 176(2):276-83. PubMed ID: 8288519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xpt-pbuX, yqhZ-folD, and pbuO.
    Saxild HH; Brunstedt K; Nielsen KI; Jarmer H; Nygaard P
    J Bacteriol; 2001 Nov; 183(21):6175-83. PubMed ID: 11591660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.