These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 17228718)
1. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur]. Fan L; Wang E Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718 [TBL] [Abstract][Full Text] [Related]
2. [Finite element analysis (FEA) for the structure capacity of proximal femur during falling--(I) FEA model and the failure criteria for the bone]. Fan L; Wang E Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1028-32. PubMed ID: 17121347 [TBL] [Abstract][Full Text] [Related]
3. The effect of impact direction on the structural capacity of the proximal femur during falls. Ford CM; Keaveny TM; Hayes WC J Bone Miner Res; 1996 Mar; 11(3):377-83. PubMed ID: 8852948 [TBL] [Abstract][Full Text] [Related]
4. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Majumder S; Roychowdhury A; Pal S Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483 [TBL] [Abstract][Full Text] [Related]
5. Finite element analysis of a bone-implant system with the proximal femur nail. Helwig P; Faust G; Hindenlang U; Kröplin B; Eingartner C Technol Health Care; 2006; 14(4-5):411-9. PubMed ID: 17065762 [TBL] [Abstract][Full Text] [Related]
6. Finite element modeling of the influence of hand position and bone properties on the Colles' fracture load during a fall. Buchanan D; Ural A J Biomech Eng; 2010 Aug; 132(8):081007. PubMed ID: 20670056 [TBL] [Abstract][Full Text] [Related]
7. Effect of force direction on femoral fracture load for two types of loading conditions. Keyak JH; Skinner HB; Fleming JA J Orthop Res; 2001 Jul; 19(4):539-44. PubMed ID: 11518258 [TBL] [Abstract][Full Text] [Related]
8. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold: an in vitro biomechanical study under falling conditions of the elderly. Parkkari J; Kannus P; Heikkilä J; Poutala J; Sievänen H; Vuori I J Bone Miner Res; 1995 Oct; 10(10):1437-42. PubMed ID: 8686498 [TBL] [Abstract][Full Text] [Related]
9. Investigation into the effect of varus-valgus orientation on load transfer in the resurfaced femoral head: a multi-femur finite element analysis. Radcliffe IA; Taylor M Clin Biomech (Bristol); 2007 Aug; 22(7):780-6. PubMed ID: 17544555 [TBL] [Abstract][Full Text] [Related]
10. Finite element study of the proximal femur with retained trochanteric gamma nail and after removal of nail. Mahaisavariya B; Sitthiseripratip K; Suwanprateeb J Injury; 2006 Aug; 37(8):778-85. PubMed ID: 16499913 [TBL] [Abstract][Full Text] [Related]
11. Effect of local density changes on the failure load of the proximal femur. Oden ZM; Selvitelli DM; Bouxsein ML J Orthop Res; 1999 Sep; 17(5):661-7. PubMed ID: 10569474 [TBL] [Abstract][Full Text] [Related]
12. A B-spline based heterogeneous modeling and analysis of proximal femur with graded element. Pise UV; Bhatt AD; Srivastava RK; Warkedkar R J Biomech; 2009 Aug; 42(12):1981-8. PubMed ID: 19541316 [TBL] [Abstract][Full Text] [Related]
13. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes. Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H J Biomech; 2018 Jul; 76():136-143. PubMed ID: 29921524 [TBL] [Abstract][Full Text] [Related]
14. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Schileo E; Taddei F; Cristofolini L; Viceconti M J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179 [TBL] [Abstract][Full Text] [Related]
15. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372 [TBL] [Abstract][Full Text] [Related]
16. A comparative study between axial compression and lateral fall configuration tested in a rat proximal femur model. Zhang G; Qin L; Shi Y; Leung K Clin Biomech (Bristol); 2005 Aug; 20(7):729-35. PubMed ID: 15963616 [TBL] [Abstract][Full Text] [Related]
17. Physiologically based boundary conditions in finite element modelling. Speirs AD; Heller MO; Duda GN; Taylor WR J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504 [TBL] [Abstract][Full Text] [Related]
18. Anatomical hip model for the mechanical testing of hip protectors. Derler S; Spierings AB; Schmitt KU Med Eng Phys; 2005 Jul; 27(6):475-85. PubMed ID: 15990064 [TBL] [Abstract][Full Text] [Related]
19. Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. Eckstein F; Wunderer C; Boehm H; Kuhn V; Priemel M; Link TM; Lochmüller EM J Bone Miner Res; 2004 Mar; 19(3):379-85. PubMed ID: 15040825 [TBL] [Abstract][Full Text] [Related]
20. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling. Jang IG; Kim IY J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]