BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17228718)

  • 1. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Finite element analysis (FEA) for the structure capacity of proximal femur during falling--(I) FEA model and the failure criteria for the bone].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1028-32. PubMed ID: 17121347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of impact direction on the structural capacity of the proximal femur during falls.
    Ford CM; Keaveny TM; Hayes WC
    J Bone Miner Res; 1996 Mar; 11(3):377-83. PubMed ID: 8852948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of a bone-implant system with the proximal femur nail.
    Helwig P; Faust G; Hindenlang U; Kröplin B; Eingartner C
    Technol Health Care; 2006; 14(4-5):411-9. PubMed ID: 17065762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of the influence of hand position and bone properties on the Colles' fracture load during a fall.
    Buchanan D; Ural A
    J Biomech Eng; 2010 Aug; 132(8):081007. PubMed ID: 20670056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of force direction on femoral fracture load for two types of loading conditions.
    Keyak JH; Skinner HB; Fleming JA
    J Orthop Res; 2001 Jul; 19(4):539-44. PubMed ID: 11518258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold: an in vitro biomechanical study under falling conditions of the elderly.
    Parkkari J; Kannus P; Heikkilä J; Poutala J; Sievänen H; Vuori I
    J Bone Miner Res; 1995 Oct; 10(10):1437-42. PubMed ID: 8686498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the effect of varus-valgus orientation on load transfer in the resurfaced femoral head: a multi-femur finite element analysis.
    Radcliffe IA; Taylor M
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):780-6. PubMed ID: 17544555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element study of the proximal femur with retained trochanteric gamma nail and after removal of nail.
    Mahaisavariya B; Sitthiseripratip K; Suwanprateeb J
    Injury; 2006 Aug; 37(8):778-85. PubMed ID: 16499913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of local density changes on the failure load of the proximal femur.
    Oden ZM; Selvitelli DM; Bouxsein ML
    J Orthop Res; 1999 Sep; 17(5):661-7. PubMed ID: 10569474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A B-spline based heterogeneous modeling and analysis of proximal femur with graded element.
    Pise UV; Bhatt AD; Srivastava RK; Warkedkar R
    J Biomech; 2009 Aug; 42(12):1981-8. PubMed ID: 19541316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    J Biomech; 2018 Jul; 76():136-143. PubMed ID: 29921524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study between axial compression and lateral fall configuration tested in a rat proximal femur model.
    Zhang G; Qin L; Shi Y; Leung K
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):729-35. PubMed ID: 15963616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical hip model for the mechanical testing of hip protectors.
    Derler S; Spierings AB; Schmitt KU
    Med Eng Phys; 2005 Jul; 27(6):475-85. PubMed ID: 15990064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur.
    Eckstein F; Wunderer C; Boehm H; Kuhn V; Priemel M; Link TM; Lochmüller EM
    J Bone Miner Res; 2004 Mar; 19(3):379-85. PubMed ID: 15040825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling.
    Jang IG; Kim IY
    J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.