These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 17228942)

  • 1. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.
    Li H; Fajer M; Yang W
    J Chem Phys; 2007 Jan; 126(2):024106. PubMed ID: 17228942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the convergence improvement in the metadynamics simulations: a Wang-Landau recursion approach.
    Min D; Liu Y; Carbone I; Yang W
    J Chem Phys; 2007 May; 126(19):194104. PubMed ID: 17523795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid recursion method to robustly ensure convergence efficiencies in the simulated scaling based free energy simulations.
    Zheng L; Carbone IO; Lugovskoy A; Berg BA; Yang W
    J Chem Phys; 2008 Jul; 129(3):034105. PubMed ID: 18647014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic approach to improve "alchemical" free energy calculation in rugged energy surface.
    Min D; Li H; Li G; Bitetti-Putzer R; Yang W
    J Chem Phys; 2007 Apr; 126(14):144109. PubMed ID: 17444703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sampling enhancement for the quantum mechanical potential based molecular dynamics simulations: a general algorithm and its extension for free energy calculation on rugged energy surface.
    Li H; Yang W
    J Chem Phys; 2007 Mar; 126(11):114104. PubMed ID: 17381193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the simulated scaling based free energy simulations: Adaptive optimization of the scaling parameter intervals.
    Zheng L; Yang W
    J Chem Phys; 2008 Sep; 129(12):124107. PubMed ID: 19045006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-topology/dual-coordinate free-energy simulation using QM/MM force field.
    Hu H; Yang W
    J Chem Phys; 2005 Jul; 123(4):041102. PubMed ID: 16095339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations.
    Heyden A; Lin H; Truhlar DG
    J Phys Chem B; 2007 Mar; 111(9):2231-41. PubMed ID: 17288477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconciling semiclassical and Bohmian mechanics. I. Stationary states.
    Poirier B
    J Chem Phys; 2004 Sep; 121(10):4501-15. PubMed ID: 15332880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions.
    Liu H; Lu Z; Cisneros GA; Yang W
    J Chem Phys; 2004 Jul; 121(2):697-706. PubMed ID: 15260596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy.
    He X; Zhang JZ
    J Chem Phys; 2006 May; 124(18):184703. PubMed ID: 16709127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized-ensemble algorithms for molecular simulations of biopolymers.
    Mitsutake A; Sugita Y; Okamoto Y
    Biopolymers; 2001; 60(2):96-123. PubMed ID: 11455545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving implicit solvent simulations: a Poisson-centric view.
    Baker NA
    Curr Opin Struct Biol; 2005 Apr; 15(2):137-43. PubMed ID: 15837170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New mixed quantumsemiclassical propagation method.
    Antoniou D; Gelman D; Schwartz SD
    J Chem Phys; 2007 May; 126(18):184107. PubMed ID: 17508792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the multiensemble sampling to the equilibrium folding of proteins.
    Son HS; Kim SY; Lee J; Han KK
    Bioinformatics; 2006 Aug; 22(15):1832-7. PubMed ID: 16766555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes.
    Mauro JC; Loucks RJ; Balakrishnan J; Raghavan S
    J Chem Phys; 2007 May; 126(19):194103. PubMed ID: 17523794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.
    Wang Q; Hammes-Schiffer S
    J Chem Phys; 2006 Nov; 125(18):184102. PubMed ID: 17115733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.