These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17228949)

  • 1. Theoretical investigation of highly excited vibrational states in DFCO: calculation of the out-of-plane bending states and simulation of the intramolecular vibrational energy redistribution.
    Pasin G; Iung C; Gatti F; Meyer HD
    J Chem Phys; 2007 Jan; 126(2):024302. PubMed ID: 17228949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of intramolecular vibrational energy redistribution in highly excited HFCO.
    Pasin G; Gatti F; Iung C; Meyer HD
    J Chem Phys; 2006 May; 124(19):194304. PubMed ID: 16729811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of intramolecular vibrational energy redistribution in HFCO and DFCO induced by an external field.
    Pasin G; Iung C; Gatti F; Richter F; Léonard C; Meyer HD
    J Chem Phys; 2008 Oct; 129(14):144304. PubMed ID: 19045144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational calculation of specific, highly excited vibrational states in DFCO: comparison with experimental data.
    Iung C; Pasin G
    J Phys Chem A; 2007 Oct; 111(41):10426-33. PubMed ID: 17880188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular vibrational energy redistribution in the highly excited fluoroform molecule: a quantum mechanical study using the multiconfiguration time-dependent Hartree algorithm.
    Iung C; Gatti F; Meyer HD
    J Chem Phys; 2004 Apr; 120(15):6992-8. PubMed ID: 15267599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of specific, highly excited vibrational states based on a Davidson scheme: application to HFCO.
    Iung C; Ribeiro F
    J Chem Phys; 2005 Nov; 123(17):174105. PubMed ID: 16375515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Jacobi-Wilson description coupled to a block-Davidson algorithm: an efficient scheme to calculate highly excited vibrational levels.
    Ribeiro F; Iung C; Leforestier C
    J Chem Phys; 2005 Aug; 123(5):054106. PubMed ID: 16108630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiconfigurational time-dependent Hartree calculations for tunneling splittings of vibrational states: Theoretical considerations and application to malonaldehyde.
    Hammer T; Coutinho-Neto MD; Viel A; Manthe U
    J Chem Phys; 2009 Dec; 131(22):224109. PubMed ID: 20001026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent wave packet study on trans-cis isomerization of HONO.
    Richter F; Rosmus P; Gatti F; Meyer HD
    J Chem Phys; 2004 Apr; 120(13):6072-84. PubMed ID: 15267491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave packet simulation of nonadiabatic dynamics in highly excited 1,3-dibromopropane.
    Brogaard RY; Møller KB; Sølling TI
    J Phys Chem A; 2008 Oct; 112(42):10481-6. PubMed ID: 18821744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations and instantaneous normal-mode analysis of the vibrational relaxation of the C-H stretching modes of N-methylacetamide-d in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Phys Chem A; 2010 Nov; 114(43):11450-61. PubMed ID: 20932051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-classical trajectory simulations of intramolecular vibrational energy redistribution in HONO2 and DONO2.
    Liu Y; Lohr LL; Barker JR
    J Phys Chem B; 2005 May; 109(17):8304-9. PubMed ID: 16851973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On modeling the pressure-dependent photoisomerization of trans-stilbene by including slow intramolecular vibrational energy redistribution.
    Weston RE; Barker JR
    J Phys Chem A; 2006 Jun; 110(25):7888-97. PubMed ID: 16789777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular vibrational energy redistribution in bridged azulene-anthracene compounds: ballistic energy transport through molecular chains.
    Schwarzer D; Kutne P; Schröder C; Troe J
    J Chem Phys; 2004 Jul; 121(4):1754-64. PubMed ID: 15260725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.
    Riga JM; Fredj E; Martens CC
    J Chem Phys; 2006 Feb; 124(6):64506. PubMed ID: 16483219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular vibrational energy relaxation in nitrous acid (HONO).
    Botan V; Hamm P
    J Chem Phys; 2008 Oct; 129(16):164506. PubMed ID: 19045283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method.
    Doriol LJ; Gatti F; Iung C; Meyer HD
    J Chem Phys; 2008 Dec; 129(22):224109. PubMed ID: 19071909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of highly excited vibrational states using a Richardson-Leja-Davidson scheme.
    Karlsson HO
    J Chem Phys; 2007 Feb; 126(8):084105. PubMed ID: 17343438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics.
    Vendrell O; Gatti F; Meyer HD
    J Chem Phys; 2007 Nov; 127(18):184303. PubMed ID: 18020635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overlapping resonances in the control of intramolecular vibrational redistribution.
    Gerbasi D; Sanz AS; Christopher PS; Shapiro M; Brumer P
    J Chem Phys; 2007 Mar; 126(12):124307. PubMed ID: 17411123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.