These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 17228973)
1. Rheology of a reversible supramolecular polymer studied by comparison of the effects of temperature and chain stoppers. Knoben W; Besseling NA; Cohen Stuart MA J Chem Phys; 2007 Jan; 126(2):024907. PubMed ID: 17228973 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations of supramolecular polymer rheology. Li Z; Djohari H; Dormidontova EE J Chem Phys; 2010 Nov; 133(18):184904. PubMed ID: 21073229 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of reversible supramolecular polymers: independent determination of the dependence of linear viscoelasticity on concentration and chain length by using chain stoppers. Knoben W; Besseling NA; Bouteiller L; Stuart CM Phys Chem Chem Phys; 2005 Jun; 7(11):2390-8. PubMed ID: 19791307 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of the gel transition in reversible associating polymers. Baljon AR; Flynn D; Krawzsenek D J Chem Phys; 2007 Jan; 126(4):044907. PubMed ID: 17286509 [TBL] [Abstract][Full Text] [Related]
6. Viscoelastic properties of an exopolysaccharide: Aeromonas gum, produced by Aeromonas nichidenii 5797. Xu X; Chen P; Zhang L Biorheology; 2007; 44(5-6):387-401. PubMed ID: 18401077 [TBL] [Abstract][Full Text] [Related]
7. Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. Giupponi G; De Fabritiis G; Coveney PV J Chem Phys; 2007 Apr; 126(15):154903. PubMed ID: 17461663 [TBL] [Abstract][Full Text] [Related]
8. Negative compressibility and nonequivalence of two statistical ensembles in the escape transition of a polymer chain. Skvortsov AM; Klushin LI; Leermakers FA J Chem Phys; 2007 Jan; 126(2):024905. PubMed ID: 17228971 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Mackay ME; Dao TT; Tuteja A; Ho DL; van Horn B; Kim HC; Hawker CJ Nat Mater; 2003 Nov; 2(11):762-6. PubMed ID: 14566332 [TBL] [Abstract][Full Text] [Related]
11. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior. Garai A; Nandi AK J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585 [TBL] [Abstract][Full Text] [Related]
12. Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity. Decruppe JP; Ponton A Eur Phys J E Soft Matter; 2003 Mar; 10(3):201-7. PubMed ID: 15015102 [TBL] [Abstract][Full Text] [Related]
13. Molecular-dynamics simulation of model polymer nanocomposite rheology and comparison with experiment. Kairn T; Daivis PJ; Ivanov I; Bhattacharya SN J Chem Phys; 2005 Nov; 123(19):194905. PubMed ID: 16321111 [TBL] [Abstract][Full Text] [Related]
15. The effects of shear on the delay time for gelation of hemoglobin S. Briehl RW Blood Cells; 1982; 8(2):201-12. PubMed ID: 7159745 [TBL] [Abstract][Full Text] [Related]
17. DWS microrheology of a linear polysaccharide. Hemar Y; Pinder DN Biomacromolecules; 2006 Mar; 7(3):674-6. PubMed ID: 16529397 [TBL] [Abstract][Full Text] [Related]
18. Dynamic yielding, shear thinning, and stress rheology of polymer-particle suspensions and gels. Kobelev V; Schweizer KS J Chem Phys; 2005 Oct; 123(16):164903. PubMed ID: 16268724 [TBL] [Abstract][Full Text] [Related]
19. Rheological properties of dairy cattle manure. El-Mashad HM; van Loon WK; Zeeman G; Bot GP Bioresour Technol; 2005 Mar; 96(5):531-5. PubMed ID: 15501658 [TBL] [Abstract][Full Text] [Related]
20. Effect of concentration and temperature on the rheological behavior of collagen solution. Lai G; Li Y; Li G Int J Biol Macromol; 2008 Apr; 42(3):285-91. PubMed ID: 18275999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]