BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17229146)

  • 1. A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones.
    Springob K; Samappito S; Jindaprasert A; Schmidt J; Page JE; De-Eknamkul W; Kutchan TM
    FEBS J; 2007 Jan; 274(2):406-17. PubMed ID: 17229146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrone polyketides synthesized by a type III polyketide synthase from Drosophyllum lusitanicum.
    Jindaprasert A; Springob K; Schmidt J; De-Eknamkul W; Kutchan TM
    Phytochemistry; 2008 Dec; 69(18):3043-53. PubMed ID: 18466932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide.
    Abe I; Utsumi Y; Oguro S; Noguchi H
    FEBS Lett; 2004 Mar; 562(1-3):171-6. PubMed ID: 15044020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase.
    Abe I; Oguro S; Utsumi Y; Sano Y; Noguchi H
    J Am Chem Soc; 2005 Sep; 127(36):12709-16. PubMed ID: 16144421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based engineering of a plant type III polyketide synthase: formation of an unnatural nonaketide naphthopyrone.
    Abe I; Morita H; Oguro S; Noma H; Wanibuchi K; Kawahara N; Goda Y; Noguchi H; Kohno T
    J Am Chem Soc; 2007 May; 129(18):5976-80. PubMed ID: 17439126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A type III polyketide synthase from Rhizobium etli condenses malonyl CoAs to a heptaketide pyrone with unusually high catalytic efficiency.
    Jeya M; Kim TS; Kumar Tiwari M; Li J; Zhao H; Lee JK
    Mol Biosyst; 2012 Oct; 8(12):3103-6. PubMed ID: 23059854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyketide synthesis in tobacco plants transformed with a Plumbago zeylanica type III hexaketide synthase.
    Jadhav S; Phapale P; Thulasiram HV; Bhargava S
    Phytochemistry; 2014 Feb; 98():92-100. PubMed ID: 24355695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of root-specific chalcone synthases from Cassia alata.
    Samappito S; Page J; Schmidt J; De-Eknamkul W; Kutchan TM
    Planta; 2002 Nov; 216(1):64-71. PubMed ID: 12430015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328.
    Kirimura K; Watanabe S; Kobayashi K
    Biochem Biophys Res Commun; 2016 May; 473(4):1106-1110. PubMed ID: 27060547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase.
    Abe I; Watanabe T; Lou W; Noguchi H
    FEBS J; 2006 Jan; 273(1):208-18. PubMed ID: 16367761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel type III polyketide synthases from Aloe arborescens.
    Mizuuchi Y; Shi SP; Wanibuchi K; Kojima A; Morita H; Noguchi H; Abe I
    FEBS J; 2009 Apr; 276(8):2391-401. PubMed ID: 19348024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspergillus oryzae CsyB catalyzes the condensation of two β-ketoacyl-CoAs to form 3-acetyl-4-hydroxy-6-alkyl-α-pyrone.
    Hashimoto M; Koen T; Takahashi H; Suda C; Kitamoto K; Fujii I
    J Biol Chem; 2014 Jul; 289(29):19976-84. PubMed ID: 24895122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins.
    Karppinen K; Hokkanen J; Mattila S; Neubauer P; Hohtola A
    FEBS J; 2008 Sep; 275(17):4329-42. PubMed ID: 18647343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases.
    Abe I; Watanabe T; Noguchi H
    Phytochemistry; 2004 Sep; 65(17):2447-53. PubMed ID: 15381408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens.
    Brachmann AO; Joyce SA; Jenke-Kodama H; Schwär G; Clarke DJ; Bode HB
    Chembiochem; 2007 Sep; 8(14):1721-8. PubMed ID: 17722122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system.
    Busch B; Hertweck C
    Phytochemistry; 2009; 70(15-16):1833-40. PubMed ID: 19651421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides.
    Funa N; Funabashi M; Yoshimura E; Horinouchi S
    J Biol Chem; 2005 Apr; 280(15):14514-23. PubMed ID: 15701630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites.
    Sankaranarayanan R; Saxena P; Marathe UB; Gokhale RS; Shanmugam VM; Rukmini R
    Nat Struct Mol Biol; 2004 Sep; 11(9):894-900. PubMed ID: 15286723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting the reaction flexibility of a type III polyketide synthase through in vitro pathway manipulation.
    Jeong JC; Srinivasan A; Grüschow S; Bach H; Sherman DH; Dordick JS
    J Am Chem Soc; 2005 Jan; 127(1):64-5. PubMed ID: 15631450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural control of polyketide formation in plant-specific polyketide synthases.
    Jez JM; Austin MB; Ferrer J; Bowman ME; Schröder J; Noel JP
    Chem Biol; 2000 Dec; 7(12):919-30. PubMed ID: 11137815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.