These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 17229763)
1. In situ observations of domain structures and magnetic flux distributions in Mn-Zn and Ni-Zn ferrites by Lorentz microscopy and electron holography. Kasahara T; Shindo D; Yoshikawa H; Sato T; Kondo K J Electron Microsc (Tokyo); 2007 Jan; 56(1):7-16. PubMed ID: 17229763 [TBL] [Abstract][Full Text] [Related]
2. Recycling spent zinc manganese dioxide batteries through synthesizing Zn-Mn ferrite magnetic materials. Nan J; Han D; Cui M; Yang M; Pan L J Hazard Mater; 2006 May; 133(1-3):257-61. PubMed ID: 16310946 [TBL] [Abstract][Full Text] [Related]
3. Structure, morphology and magnetic properties of Mg((x))Zn((1 - x))Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: a low-toxicity alternative to Ni((x))Zn((1 - x))Fe2O4 ferrites. Daigle A; Modest J; Geiler AL; Gillette S; Chen Y; Geiler M; Hu B; Kim S; Stopher K; Vittoria C; Harris VG Nanotechnology; 2011 Jul; 22(30):305708. PubMed ID: 21719975 [TBL] [Abstract][Full Text] [Related]
4. One-dimensional SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers and enhancement magnetic property. Song F; Shen X; Liu M; Xiang J J Nanosci Nanotechnol; 2011 Aug; 11(8):6979-85. PubMed ID: 22103109 [TBL] [Abstract][Full Text] [Related]
5. Study on the preparation of Mn-Zn soft magnetic ferrite powders from waste Zn-Mn dry batteries. Peng CH; Bai BS; Chen YF Waste Manag; 2008; 28(2):326-32. PubMed ID: 17561387 [TBL] [Abstract][Full Text] [Related]
6. Preparation and magnetic properties of Zn-Cu-Cr-La ferrite and its nanocomposites with polyaniline. Li L; Liu H; Wang Y; Jiang J; Xu F J Colloid Interface Sci; 2008 May; 321(2):265-71. PubMed ID: 18313067 [TBL] [Abstract][Full Text] [Related]
7. In situ Lorentz microscopy in an alternating magnetic field. Akase Z; Shindo D J Electron Microsc (Tokyo); 2010; 59(3):207-13. PubMed ID: 20083675 [TBL] [Abstract][Full Text] [Related]
8. Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy. Inoue M; Tomita T; Naruse M; Akase Z; Murakami Y; Shindo D J Electron Microsc (Tokyo); 2005 Dec; 54(6):509-13. PubMed ID: 16415046 [TBL] [Abstract][Full Text] [Related]
9. In situ TEM observation of magnetic materials. Tanase M; Petford-Long AK Microsc Res Tech; 2009 Mar; 72(3):187-96. PubMed ID: 19165741 [TBL] [Abstract][Full Text] [Related]
10. Domain structures of ultrafine grained ferromagnets achieved by severe plastic deformation or melt quenching. Korznikova GF J Microsc; 2010 Sep; 239(3):239-44. PubMed ID: 20701662 [TBL] [Abstract][Full Text] [Related]
12. Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method. Gabal MA; Al-Luhaibi RS; Al Angari YM J Hazard Mater; 2013 Feb; 246-247():227-33. PubMed ID: 23313896 [TBL] [Abstract][Full Text] [Related]
13. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography. Zheng C; Kirmse H; Long J; Laughlin DE; McHenry ME; Neumann W Microsc Microanal; 2015 Apr; 21(2):498-509. PubMed ID: 25404008 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a Co-CoO obliquely evaporated magnetic tape by analytical electron microscopy and electron holography. Shindo D; Hosokawa M; Liu Z; Murakami Y; Ito T; Iwasaki Y; Tachibana J Microsc Microanal; 2004 Feb; 10(1):116-21. PubMed ID: 15306074 [TBL] [Abstract][Full Text] [Related]
15. Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement. Song F; Shen X; Liu M; Xiang J J Colloid Interface Sci; 2011 Feb; 354(1):413-6. PubMed ID: 21144534 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of microstructural and magnetic properties of high spin Mn substituted nanocrystalline Ni-Mn-Cu-Zn ferrites. Ahad A; Hossain AKMA Heliyon; 2024 Feb; 10(4):e26050. PubMed ID: 38404875 [TBL] [Abstract][Full Text] [Related]
17. Correlation between the magnetic-microstructure and microwave mitigation ability of M Datt G; Kotabage C; Datar S; Abhyankar AC Phys Chem Chem Phys; 2018 Nov; 20(41):26431-26442. PubMed ID: 30306176 [TBL] [Abstract][Full Text] [Related]
18. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography. Rodríguez LA; Magén C; Snoeck E; Gatel C; Marín L; Serrano-Ramón L; Prieto JL; Muñoz M; Algarabel PA; Morellon L; De Teresa JM; Ibarra MR Ultramicroscopy; 2013 Nov; 134():144-54. PubMed ID: 23831132 [TBL] [Abstract][Full Text] [Related]
19. Observations of a magnetic microstructure in a Co-CoO obliquely evaporated tape using electron holography. Tohara K; Xia W; Murakami Y; Shindo D; Ito T; Iwasaki Y; Tachibana J J Electron Microsc (Tokyo); 2009 Jan; 58(1):7-13. PubMed ID: 19153102 [TBL] [Abstract][Full Text] [Related]
20. Lorentz microscopy observation of vortices in high-Tc superconductors using a 1-MV field emission transmission electron microscope. Harada K Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S3-15. PubMed ID: 23549454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]