These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 17229904)
21. [Studies on the committed differentiation of CD34+ hematopoietic progenitor cells]. Pei X; Wang L; Xu L Zhonghua Xue Ye Xue Za Zhi; 1998 Jun; 19(6):289-93. PubMed ID: 11243107 [TBL] [Abstract][Full Text] [Related]
22. [In vitro differenciation and functions of dendritic cells obtained from CD34+ hematopoietic progenitors]. Dubois B; Caux C Pathol Biol (Paris); 1995 Dec; 43(10):829-40. PubMed ID: 8786887 [TBL] [Abstract][Full Text] [Related]
24. TNF-alpha induces the generation of Langerin/(CD207)+ immature Langerhans-type dendritic cells from both CD14-CD1a and CD14+CD1a- precursors derived from CD34+ cord blood cells. Arrighi JF; Soulas C; Hauser C; Saeland S; Chapuis B; Zubler RH; Kindler V Eur J Immunol; 2003 Jul; 33(7):2053-63. PubMed ID: 12884872 [TBL] [Abstract][Full Text] [Related]
25. Expansion of dendritic cell precursors from human CD34(+) progenitor cells isolated from healthy donor blood; growth factor combination determines proliferation rate and functional outcome. Bontkes HJ; De Gruijl TD; Schuurhuis GJ; Scheper RJ; Meijer CJ; Hooijberg E J Leukoc Biol; 2002 Aug; 72(2):321-9. PubMed ID: 12149423 [TBL] [Abstract][Full Text] [Related]
26. Differential effects of autologous serum on CD34(+) or monocyte-derived dendritic cells. Loudovaris M; Hansen M; Suen Y; Lee SM; Casing P; Bender JG J Hematother Stem Cell Res; 2001 Aug; 10(4):569-78. PubMed ID: 11522239 [TBL] [Abstract][Full Text] [Related]
27. Human CD34+ CD11b- cord blood stem cells generate in vitro a CD34- CD11b+ subset that is enriched in langerin+ Langerhans dendritic cell precursors. Soulas C; Arrighi JF; Saeland S; Chapuis B; Kindler V Exp Hematol; 2006 Nov; 34(11):1471-9. PubMed ID: 17046566 [TBL] [Abstract][Full Text] [Related]
28. Role of the cytokine environment and cytokine receptor expression on the generation of functionally distinct dendritic cells from human monocytes. Conti L; Cardone M; Varano B; Puddu P; Belardelli F; Gessani S Eur J Immunol; 2008 Mar; 38(3):750-62. PubMed ID: 18236400 [TBL] [Abstract][Full Text] [Related]
29. Thrombopoietin stimulates ex vivo expansion of mature neutrophils in the early stages of differentiation. Terada Y; Hato F; Sakamoto C; Hasegawa T; Suzuki K; Nakamae H; Ohta K; Yamane T; Kitagawa S; Hino M Ann Hematol; 2003 Nov; 82(11):671-6. PubMed ID: 14530871 [TBL] [Abstract][Full Text] [Related]
31. Codevelopment of dendritic cells along with erythroid differentiation from human CD34(+) cells by tumor necrosis factor-alpha. Fukaya H; Xiao W; Inaba K; Suzuki Y; Hirokawa M; Kawabata Y; Komatsuda A; Endo T; Kishimoto H; Takada G; Sawada K Exp Hematol; 2004 May; 32(5):450-60. PubMed ID: 15145213 [TBL] [Abstract][Full Text] [Related]
32. Comparison of retroviral transduction efficiency in CD34+ cells derived from bone marrow versus G-CSF-mobilized or G-CSF plus stem cell factor-mobilized peripheral blood in nonhuman primates. Hematti P; Tuchman S; Larochelle A; Metzger ME; Donahue RE; Tisdale JF Stem Cells; 2004; 22(6):1062-9. PubMed ID: 15536196 [TBL] [Abstract][Full Text] [Related]
33. Immunologic profiles of effector cells and peripheral blood stem cells mobilized with different hematopoietic growth factors. Gazitt Y Stem Cells; 2000; 18(6):390-8. PubMed ID: 11072026 [TBL] [Abstract][Full Text] [Related]
34. A serum-free culture model for studying the differentiation of human dendritic cells from adult CD34+ progenitor cells. Luft T; Pang KC; Thomas E; Bradley CJ; Savoia H; Trapani J; Cebon J Exp Hematol; 1998 Jun; 26(6):489-500. PubMed ID: 9620282 [TBL] [Abstract][Full Text] [Related]
35. CD34+-derived CD11c+ + + BDCA-1+ + CD123+ + DC: expansion of a phenotypically undescribed myeloid DC1 population for use in adoptive immunotherapy. Ward KA; Stewart LA; Schwarer AP Cytotherapy; 2006; 8(2):130-40. PubMed ID: 16698686 [TBL] [Abstract][Full Text] [Related]
36. MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers. Nelissen I; Selderslaghs I; Heuvel RV; Witters H; Verheyen GR; Schoeters G Toxicol In Vitro; 2009 Dec; 23(8):1477-81. PubMed ID: 19732821 [TBL] [Abstract][Full Text] [Related]
37. Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. Ueno H; Tcherepanova I; Reygrobellet O; Laughner E; Ventura C; Palucka AK; Banchereau J J Immunol Methods; 2004 Feb; 285(2):171-80. PubMed ID: 14980432 [TBL] [Abstract][Full Text] [Related]
38. GM-CSF promotes differentiation of human dendritic cells and T lymphocytes toward a predominantly type 1 proinflammatory response. Eksioglu EA; Mahmood SS; Chang M; Reddy V Exp Hematol; 2007 Aug; 35(8):1163-71. PubMed ID: 17562355 [TBL] [Abstract][Full Text] [Related]
39. Tumor necrosis factor alpha-stimulated endothelium: an inducer of dendritic cell development from hematopoietic progenitors and myeloid leukemic cells. Moldenhauer A; Nociari M; Lam G; Salama A; Rafii S; Moore MA Stem Cells; 2004; 22(2):144-57. PubMed ID: 14990854 [TBL] [Abstract][Full Text] [Related]
40. Dendritic cells can be successfully generated from CD34+ cord blood cells in the presence of autologous cord blood plasma. BorrĂ s FE; Matthews NC; Patel R; Navarrete C Bone Marrow Transplant; 2000 Aug; 26(4):371-6. PubMed ID: 10982282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]