These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17229921)

  • 41. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acute light exposure suppresses circadian rhythms in clock gene expression.
    Grone BP; Chang D; Bourgin P; Cao V; Fernald RD; Heller HC; Ruby NF
    J Biol Rhythms; 2011 Feb; 26(1):78-81. PubMed ID: 21252368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus.
    Karatsoreos IN; Wang A; Sasanian J; Silver R
    Endocrinology; 2007 Nov; 148(11):5487-95. PubMed ID: 17702841
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Understanding the action of the circadian clock: from phenomenologic ideas to molecular activity].
    Serviere J
    C R Seances Soc Biol Fil; 1998; 192(4):683-710. PubMed ID: 9842472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide.
    Antle MC; Kriegsfeld LJ; Silver R
    J Neurosci; 2005 Mar; 25(10):2447-54. PubMed ID: 15758152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?
    Guilding C; Piggins HD
    Eur J Neurosci; 2007 Jun; 25(11):3195-216. PubMed ID: 17552989
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.
    Feillet CA; Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2008 Dec; 28(12):2451-8. PubMed ID: 19087173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The suprachiasmatic nucleus: a clock of multiple components.
    Lee HS; Billings HJ; Lehman MN
    J Biol Rhythms; 2003 Dec; 18(6):435-49. PubMed ID: 14667145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resetting the suprachiasmatic nucleus clock.
    Kennaway DJ
    Front Biosci; 2004 Jan; 9():56-62. PubMed ID: 14766344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noise-induced coherence in multicellular circadian clocks.
    Ullner E; Buceta J; Díez-Noguera A; García-Ojalvo J
    Biophys J; 2009 May; 96(9):3573-81. PubMed ID: 19413962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macroscopic models for networks of coupled biological oscillators.
    Hannay KM; Forger DB; Booth V
    Sci Adv; 2018 Aug; 4(8):e1701047. PubMed ID: 30083596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simulating the action of zeitgebers on a coupled two-oscillator model of the human circadian system.
    Gander PH; Kronauer RE; Czeisler CA; Moore-Ede MC
    Am J Physiol; 1984 Sep; 247(3 Pt 2):R418-26. PubMed ID: 6476142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Marching along to an Offbeat Drum: Entrainment of Synthetic Gene Oscillators by a Noisy Stimulus.
    Butzin NC; Hochendoner P; Ogle CT; Hill P; Mather WH
    ACS Synth Biol; 2016 Feb; 5(2):146-53. PubMed ID: 26524465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative tests of a dual circalunidian clock model for tidal rhythmicity in the sand beach isopod Cirolana cookii.
    Mehta TS; Lewis RD
    Chronobiol Int; 2000 Jan; 17(1):29-41. PubMed ID: 10672431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Entrainment of a population of synthetic genetic oscillators.
    Mondragón-Palomino O; Danino T; Selimkhanov J; Tsimring L; Hasty J
    Science; 2011 Sep; 333(6047):1315-1319. PubMed ID: 21885786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The entrainment of persistent tidal rhythmicity in a filter-feeding bivalve using cycles of food availability.
    Williams BG; Pilditch CA
    J Biol Rhythms; 1997 Apr; 12(2):173-81. PubMed ID: 9090570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Are circadian amplitudes and periods correlated? A new twist in the story.
    Del Olmo M; Schmal C; Mizaikoff C; Grabe S; Gabriel C; Kramer A; Herzel H
    F1000Res; 2023; 12():1077. PubMed ID: 37771612
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The topology of phase response curves induced by single and paired stimuli in spontaneously oscillating chick heart cell aggregates.
    Zeng W; Glass L; Shrier A
    J Biol Rhythms; 1992; 7(2):89-104. PubMed ID: 1611132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.