These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17230276)

  • 1. Gradation of Neck Muscle Responses and Head/Neck Kinematics to Acceleration and Speed Change in Rear-end Collisions.
    Siegmund GP; Sanderson DJ; Inglis JT
    Stapp Car Crash J; 2004 Nov; 48():419-30. PubMed ID: 17230276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head and neck control varies with perturbation acceleration but not jerk: implications for whiplash injuries.
    Siegmund GP; Blouin JS
    J Physiol; 2009 Apr; 587(Pt 8):1829-42. PubMed ID: 19237420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loud preimpact tones reduce the cervical multifidus muscle response during rear-end collisions: a potential method for reducing whiplash injuries.
    Mang DW; Siegmund GP; Brown HJ; Goonetilleke SC; Blouin JS
    Spine J; 2015 Jan; 15(1):153-61. PubMed ID: 25110275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of collision pulse properties on seven proposed whiplash injury criteria.
    Siegmund GP; Heinrichs BE; Chimich DD; DeMarco AL; Brault JR
    Accid Anal Prev; 2005 Mar; 37(2):275-85. PubMed ID: 15667814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The startle response during whiplash: a protective or harmful response?
    Mang DW; Siegmund GP; Inglis JT; Blouin JS
    J Appl Physiol (1985); 2012 Aug; 113(4):532-40. PubMed ID: 22700800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do "whiplash injuries" occur in low-speed rear impacts?
    Castro WH; Schilgen M; Meyer S; Weber M; Peuker C; Wörtler K
    Eur Spine J; 1997; 6(6):366-75. PubMed ID: 9455663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating cervical muscle response and head kinematics during right, left, frontal and rear-seated perturbations.
    Sacher N; Frayne RJ; Dickey JP
    Traffic Inj Prev; 2012 Sep; 13(5):529-36. PubMed ID: 22931183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of initial seated position in low speed rear-end impacts: a comparison with the TNO rear impact dummy (TRID) model.
    Venkataramana MP; Hans SA; Bawab SY; Keifer OP; Woodhouse ML; Layson PD
    Traffic Inj Prev; 2005 Mar; 6(1):77-85. PubMed ID: 15823879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neck Muscle and Head/Neck Kinematic Responses While Bracing Against the Steering Wheel During Front and Rear Impacts.
    Fice JB; Mang DWH; Ólafsdóttir JM; Brolin K; Cripton PA; Blouin JS; Siegmund GP
    Ann Biomed Eng; 2021 Mar; 49(3):1069-1082. PubMed ID: 33215369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyographic and kinematic exploration of whiplash-type rear impacts: effect of left offset impact.
    Kumar S; Ferrari R; Narayan Y
    Spine J; 2004; 4(6):656-65; discussion 666-8. PubMed ID: 15541698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Awareness affects the response of human subjects exposed to a single whiplash-like perturbation.
    Siegmund GP; Sanderson DJ; Myers BS; Inglis JT
    Spine (Phila Pa 1976); 2003 Apr; 28(7):671-9. PubMed ID: 12671354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of perturbation acceleration and advance warning on the neck postural responses of seated subjects.
    Siegmund GP; Sanderson DJ; Inglis JT
    Exp Brain Res; 2002 Jun; 144(3):314-21. PubMed ID: 12021813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of sternocleidomastoid muscle in simulated low velocity rear-end impacts.
    Hernández IA; Fyfe KR; Heo G; Major PW
    Eur Spine J; 2006 Jun; 15(6):876-85. PubMed ID: 16133079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations.
    Siegmund GP; Sanderson DJ; Myers BS; Inglis JT
    J Biomech; 2003 Apr; 36(4):473-82. PubMed ID: 12600337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking away from whiplash: effect of head rotation in rear impacts.
    Kumar S; Ferrari R; Narayan Y
    Spine (Phila Pa 1976); 2005 Apr; 30(7):760-8. PubMed ID: 15803078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of trunk flexion in healthy volunteers in rear whiplash-type impacts.
    Kumar S; Ferrari R; Narayan Y
    Spine (Phila Pa 1976); 2005 Aug; 30(15):1742-9. PubMed ID: 16094276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cervical muscle response during whiplash: evidence of a lengthening muscle contraction.
    Brault JR; Siegmund GP; Wheeler JB
    Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):426-35. PubMed ID: 10771121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of human neck muscle activity following repeated imposed trunk-forward linear acceleration.
    Blouin JS; Descarreaux M; Bélanger-Gravel A; Simoneau M; Teasdale N
    Exp Brain Res; 2003 Jun; 150(4):458-64. PubMed ID: 12739089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of anti-whiplash seats during low/moderate speed rear-end collisions.
    Mang DWH; Siegmund GP; Blouin JS
    Traffic Inj Prev; 2020; 21(3):195-200. PubMed ID: 32027520
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.