These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Chloride ion transport in transformed normal and cystic fibrosis epithelial cells. Cozens AL; Yezzi MJ; Chin L; Simon EM; Friend DS; Gruenert DC Adv Exp Med Biol; 1991; 290():187-94; discussion 194-6. PubMed ID: 1950742 [TBL] [Abstract][Full Text] [Related]
65. Long-term cAMP activation of Na(+)-K(+)-2Cl- cotransporter activity in HT-29 human adenocarcinoma cells. Slotki IN; Breuer WV; Greger R; Cabantchik ZI Am J Physiol; 1993 Apr; 264(4 Pt 1):C857-65. PubMed ID: 7682775 [TBL] [Abstract][Full Text] [Related]
66. Use of primary cell cultures and intact isolated glandular epithelia for X-ray microanalysis. Hongpaisan J; Zhang AL; Mörk AC; Roomans GM J Microsc; 1996 Oct; 184(Pt 1):22-34. PubMed ID: 8923756 [TBL] [Abstract][Full Text] [Related]
67. Assessment of chloride secretion in human nasal epithelial cells by X-ray microanalysis. Dragomir A; Andersson C; Aslund M; Hjelte L; Roomans GM J Microsc; 2001 Sep; 203(Pt 3):277-84. PubMed ID: 11555145 [TBL] [Abstract][Full Text] [Related]
68. The chronically isoproterenol-treated rat in the study of cystic fibrosis: X-ray microanalysis of the submandibular gland. Müller RM; Roomans GM Exp Mol Pathol; 1984 Jun; 40(3):391-400. PubMed ID: 6723939 [TBL] [Abstract][Full Text] [Related]
69. Adenosine 3':5'-cyclic AMP in fibroblasts from patients with cystic fibrosis and its relationship to secretion. Buchwald M; Mapleson JL Mod Probl Paediatr; 1976 Oct 24-27; 19():165-74. PubMed ID: 201834 [No Abstract] [Full Text] [Related]
71. The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. Mall M; Bleich M; Greger R; Schreiber R; Kunzelmann K J Clin Invest; 1998 Jul; 102(1):15-21. PubMed ID: 9649552 [TBL] [Abstract][Full Text] [Related]
72. Activation of an apical Cl- conductance by Ca2+ ionophores in cystic fibrosis airway epithelia. Willumsen NJ; Boucher RC Am J Physiol; 1989 Feb; 256(2 Pt 1):C226-33. PubMed ID: 2465689 [TBL] [Abstract][Full Text] [Related]
73. Chloride transport in cultured nasal epithelium of cystic fibrosis patients. Verbeek E; de Jonge HR; Bijman J; Keulemans J; Sinaasappel M; van der Kamp AW; Scholte BJ Pflugers Arch; 1990 Feb; 415(5):540-6. PubMed ID: 2158065 [TBL] [Abstract][Full Text] [Related]
74. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Li M; McCann JD; Liedtke CM; Nairn AC; Greengard P; Welsh MJ Nature; 1988 Jan; 331(6154):358-60. PubMed ID: 2448645 [TBL] [Abstract][Full Text] [Related]
75. CFTR as a cAMP-dependent regulator of sodium channels. Stutts MJ; Canessa CM; Olsen JC; Hamrick M; Cohn JA; Rossier BC; Boucher RC Science; 1995 Aug; 269(5225):847-50. PubMed ID: 7543698 [TBL] [Abstract][Full Text] [Related]
76. Nitric oxide has no beneficial effects on ion transport defects in cystic fibrosis human nasal epithelium. Rückes-Nilges C; Lindemann H; Klimek T; Glanz H; Weber WM Pflugers Arch; 2000 Nov; 441(1):133-7. PubMed ID: 11205052 [TBL] [Abstract][Full Text] [Related]
77. Ion transport in primary cultures from human sweat gland coils studied with X-ray microanalysis. Mörk AC; Hongpaisan J; Roomans GM Cell Biol Int; 1995 Feb; 19(2):151-9. PubMed ID: 7742780 [TBL] [Abstract][Full Text] [Related]
78. Stimulation of Cl(-) secretion by chlorzoxazone. Singh AK; Devor DC; Gerlach AC; Gondor M; Pilewski JM; Bridges RJ J Pharmacol Exp Ther; 2000 Feb; 292(2):778-87. PubMed ID: 10640318 [TBL] [Abstract][Full Text] [Related]