BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1723054)

  • 1. Cytokeratin in early hamster embryogenesis and parthenogenesis: reorganization during mitosis and association with clusters of interchromatinlike granules.
    Plancha CE; Carmo-Fonseca M; David-Ferreira JF
    Differentiation; 1991 Nov; 48(2):67-74. PubMed ID: 1723054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokeratin filaments are present in golden hamster oocytes and early embryos.
    Plancha CE; Carmo-Fonseca M; David-Ferreira JF
    Differentiation; 1989 Oct; 42(1):1-9. PubMed ID: 2482819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early embryonic development in the Djungarian hamster (Phodopus sungorus) is accompanied by alterations in the distribution and intensity of an estrogen (E2)-dependent oviduct glycoprotein in the blastomere membrane and zona pellucida and in its association with F-actin.
    Murray M; Messinger SM
    Biol Reprod; 1994 Dec; 51(6):1126-39. PubMed ID: 7888491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos.
    Klymkowsky MW; Maynell LA; Polson AG
    Development; 1987 Jul; 100(3):543-57. PubMed ID: 2443336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytokeratin dynamics during oocyte maturation in the hamster requires reaching of metaphase I.
    Plancha CE
    Differentiation; 1996 May; 60(2):87-98. PubMed ID: 8641549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos.
    Lehtonen E; Lehto VP; Vartio T; Badley RA; Virtanen I
    Dev Biol; 1983 Nov; 100(1):158-65. PubMed ID: 6194024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrosome changes during meiosis in horse oocytes and first embryonic cell cycle organization following parthenogenesis, fertilization and nuclear transfer.
    Li X; Qin Y; Wilsher S; Allen WR
    Reproduction; 2006 Apr; 131(4):661-7. PubMed ID: 16595717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change of cytokeratin filament organization during the cell cycle: selective masking of an immunologic determinant in interphase PtK2 cells.
    Franke WW; Schmid E; Wellsteed J; Grund C; Gigi O; Geiger B
    J Cell Biol; 1983 Oct; 97(4):1255-60. PubMed ID: 6194164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vimentin filaments follow the preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes.
    Pagan R; Martín I; Alonso A; Llobera M; Vilaró S
    Exp Cell Res; 1996 Feb; 222(2):333-44. PubMed ID: 8598222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A monoclonal antibody against mouse oocyte cytoskeleton recognizing cytokeratin-type filaments.
    Lehtonen E
    J Embryol Exp Morphol; 1985 Dec; 90():197-209. PubMed ID: 2422311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunofluorescent localisation of cytokeratin antigens in mitotic HeLa cells using monoclonal antibodies.
    Turner BM; Ruane M
    Eur J Cell Biol; 1985 Jan; 36(1):48-57. PubMed ID: 2579815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sea urchin oocytes possess elaborate cortical arrays of microfilaments, microtubules, and intermediate filaments.
    Boyle JA; Ernst SG
    Dev Biol; 1989 Jul; 134(1):72-84. PubMed ID: 2471666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin and microtubule organization in the first cell cycle in rabbit parthenotes and nuclear transplant embryos.
    Pinto-Correia C; Collas P; Ponce de Leon FA; Robl JM
    Mol Reprod Dev; 1993 Jan; 34(1):33-42. PubMed ID: 8418814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokeratin polypeptide in cultured human squamous cell carcinoma as a possible marker for keratinization.
    Koike M; Komori A
    Gan; 1984 Jun; 75(6):525-33. PubMed ID: 6205928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dynamic changes of gamma-tubulin in preimplantation development of parthenogenetic mouse embryos.].
    Zhang QH; Shan ZY; Guan N; Xu YN; Shen JL; Zhong SQ; Lei L
    Sheng Li Xue Bao; 2008 Dec; 60(6):777-82. PubMed ID: 19082434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization of nonfilamentous actin into microfilaments is an important process for porcine oocyte maturation and early embryo development.
    Wang WH; Abeydeera LR; Prather RS; Day BN
    Biol Reprod; 2000 May; 62(5):1177-83. PubMed ID: 10775164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypotaurine requirement for in vitro development of golden hamster one-cell embryos into morulae and blastocysts, and production of term offspring from in vitro-fertilized ova.
    Barnett DK; Bavister BD
    Biol Reprod; 1992 Aug; 47(2):297-304. PubMed ID: 1391335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo parthenogenetic activation of ovulated oocytes in a marsupial, Sminthopsis crassicaudata.
    Anderson R; Breed WG
    Zygote; 1993 Aug; 1(3):231-6. PubMed ID: 8081820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule organization and chromatin configurations in hamster oocytes during fertilization and parthenogenetic activation, and after insemination with human sperm.
    Hewitson L; Haavisto A; Simerly C; Jones J; Schatten G
    Biol Reprod; 1997 Nov; 57(5):967-75. PubMed ID: 9369159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
    Gard DL; Cha BJ; King E
    Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.