BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 1723312)

  • 1. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles.
    Menestrina G; Pederzolli C; Forti S; Gambale F
    Biophys J; 1991 Dec; 60(6):1388-400. PubMed ID: 1723312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the modulation of Pseudomonas aeruginosa exotoxin A-induced pore formation by membrane surface charge density.
    Rasper DM; Merrill AR
    Biochemistry; 1994 Nov; 33(44):12981-9. PubMed ID: 7947702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adsorption of Pseudomonas aeruginosa exotoxin A to phospholipid monolayers is controlled by pH and surface potential.
    Nordera P; Serra MD; Menestrina G
    Biophys J; 1997 Sep; 73(3):1468-78. PubMed ID: 9284314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic cleavage of Pseudomonas aeruginosa exotoxin A in the presence of lipid bilayers of different composition.
    Nordera P; Menestrina G
    FEBS Lett; 1998 Jan; 421(3):268-72. PubMed ID: 9468320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transforming growth factor-alpha-Pseudomonas exotoxin hybrid protein undergoes pH-dependent conformational changes conducive to membrane interaction.
    Sanyal G; Marquis-Omer D; Gress JO; Middaugh CR
    Biochemistry; 1993 Apr; 32(13):3488-97. PubMed ID: 8461310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of Pseudomonas aeruginosa exotoxin A ionic channel incorporated in planar lipid bilayers.
    Gambale F; Rauch G; Belmonte G; Menestrina G
    FEBS Lett; 1992 Jul; 306(1):41-5. PubMed ID: 1378409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation.
    Menestrina G; Forti S; Gambale F
    Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acid-triggered entry pathway of Pseudomonas exotoxin A.
    Farahbakhsh ZT; Wisnieski BJ
    Biochemistry; 1989 Jan; 28(2):580-5. PubMed ID: 2496747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the insertion of Pseudomonas exotoxin A into membranes.
    Zalman LS; Wisnieski BJ
    Infect Immun; 1985 Dec; 50(3):630-5. PubMed ID: 3934077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of denaturation-like changes in Pseudomonas exotoxin a hydrophobicity and membrane penetration determined by characterization of pH and thermal transitions. Roles of two distinct conformationally altered states.
    Jiang JX; London E
    J Biol Chem; 1990 May; 265(15):8636-41. PubMed ID: 2111323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monensin intercalation in liposomes: effect on cytotoxicities of ricin, Pseudomonas exotoxin A and diphtheria toxin in CHO cells.
    Madan S; Ghosh PC
    Biochim Biophys Acta; 1992 Sep; 1110(1):37-44. PubMed ID: 1390834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A.
    Yates SP; Merrill AR
    Biochem J; 2004 May; 379(Pt 3):563-72. PubMed ID: 14733615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas exotoxin A. Membrane binding, insertion, and traversal.
    Farahbakhsh ZT; Baldwin RL; Wisnieski BJ
    J Biol Chem; 1986 Aug; 261(24):11404-8. PubMed ID: 3733757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK; Prentice GA; Merrill AR
    Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism.
    Wilson BA; Collier RJ
    Curr Top Microbiol Immunol; 1992; 175():27-41. PubMed ID: 1628498
    [No Abstract]   [Full Text] [Related]  

  • 17. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity.
    Wedekind JE; Trame CB; Dorywalska M; Koehl P; Raschke TM; McKee M; FitzGerald D; Collier RJ; McKay DB
    J Mol Biol; 2001 Dec; 314(4):823-37. PubMed ID: 11734000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the elucidation of the catalytic mechanism of the mono-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exotoxin A.
    Armstrong S; Merrill AR
    Biochemistry; 2004 Jan; 43(1):183-94. PubMed ID: 14705944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein interaction using tryptophan analogues: novel spectroscopic probes for toxin-elongation factor-2 interactions.
    Mohammadi F; Prentice GA; Merrill AR
    Biochemistry; 2001 Aug; 40(34):10273-83. PubMed ID: 11513605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.