These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17233575)

  • 1. Inositol trisphosphate and calcium oscillations.
    Berridge MJ
    Biochem Soc Symp; 2007; (74):1-7. PubMed ID: 17233575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-induced Ca2+ oscillations through the regulation of the inositol 1,4,5-trisphosphate-gated Ca2+ channel: an allosteric model.
    Laurent M; Claret M
    J Theor Biol; 1997 Jun; 186(3):307-26. PubMed ID: 9219669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration.
    Wakui M; Potter BV; Petersen OH
    Nature; 1989 May; 339(6222):317-20. PubMed ID: 2498663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations.
    Kowalewski JM; Uhlén P; Kitano H; Brismar H
    Math Biosci; 2006 Dec; 204(2):232-49. PubMed ID: 16620876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium promotes calcium oscillations in mouse meiotic oocytes and early embryos through InsP3 receptors, and requires activation of phospholipase and the synergistic action of InsP3.
    Zhang D; Pan L; Yang LH; He XK; Huang XY; Sun FZ
    Hum Reprod; 2005 Nov; 20(11):3053-61. PubMed ID: 16055456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis.
    Chin WC; Quesada I; Nguyen T; Verdugo P
    Novartis Found Symp; 2002; 248():132-41; discussion 141-9, 277-82. PubMed ID: 12568492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Characteristics of inositoltrisphosphate-sensitive Ca2+ stores in the acinar cells of rat submandibular salivary gland].
    Kopach OV; Kruhlykov IA; Kostiuk PH; Voĭtenko NV; Fedirko NV
    Fiziol Zh (1994); 2006; 52(1):30-40. PubMed ID: 16553296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sweet taste receptor interacting protein CIB1 is a general inhibitor of InsP3-dependent Ca2+ release in vivo.
    Hennigs JK; Burhenne N; Stähler F; Winnig M; Walter B; Meyerhof W; Schmale H
    J Neurochem; 2008 Sep; 106(5):2249-62. PubMed ID: 18627437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InsP3 signaling induces pulse-modulated Ca2+ signals in the nucleus of airway epithelial ciliated cells.
    Quesada I; Verdugo P
    Biophys J; 2005 Jun; 88(6):3946-53. PubMed ID: 15792976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium oscillations: phenomena, mechanisms and significance.
    Cobbold PH; Cuthbertson KS
    Semin Cell Biol; 1990 Aug; 1(4):311-21. PubMed ID: 2103516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of Ins(1,4,5)-trisphosphate-dependent calcium signaling in neonatal gonadotrophs.
    Zemkova H; Balik A; Kretschmannova K; Mazna P; Stojilkovic SS
    Cell Calcium; 2004 Aug; 36(2):89-97. PubMed ID: 15193857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What drives calcium entry during [Ca2+]i oscillations?--challenging the capacitative model.
    Shuttleworth TJ
    Cell Calcium; 1999 Mar; 25(3):237-46. PubMed ID: 10378085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-induced Ca2+ oscillations: properties of a model based on Ca(2+)-induced Ca2+ release.
    Dupont G; Berridge MJ; Goldbeter A
    Cell Calcium; 1991; 12(2-3):73-85. PubMed ID: 1647878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The InsP3 receptor: its role in neuronal physiology and neurodegeneration.
    Banerjee S; Hasan G
    Bioessays; 2005 Oct; 27(10):1035-47. PubMed ID: 16163728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InsP3-induced Ca2+ excitability of the endoplasmic reticulum.
    Keizer J; Li YX; Stojilković S; Rinzel J
    Mol Biol Cell; 1995 Aug; 6(8):945-51. PubMed ID: 7579710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors.
    Williams GS; Molinelli EJ; Smith GD
    J Theor Biol; 2008 Jul; 253(1):170-88. PubMed ID: 18405920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Quantal" Ca2+ release at the cytoplasmic aspect of the Ins(1,4,5)P3R channel in smooth muscle.
    McCarron JG; Chalmers S; Muir TC
    J Cell Sci; 2008 Jan; 121(Pt 1):86-98. PubMed ID: 18073237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of muscarinic receptors reduces store-operated Ca2+ entry in HEK293 cells.
    Sternfeld L; Dudenhöffer M; Ludes A; Heinze D; Anderie I; Krause E
    Cell Signal; 2007 Jul; 19(7):1457-64. PubMed ID: 17321109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis.
    Tang RH; Han S; Zheng H; Cook CW; Choi CS; Woerner TE; Jackson RB; Pei ZM
    Science; 2007 Mar; 315(5817):1423-6. PubMed ID: 17347443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.