These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 17233628)
1. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes. Schwarz A; Brecker L; Nidetzky B Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628 [TBL] [Abstract][Full Text] [Related]
2. The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis. Mueller M; Nidetzky B FEBS Lett; 2007 Apr; 581(7):1403-8. PubMed ID: 17350620 [TBL] [Abstract][Full Text] [Related]
3. Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate. Schwarz A; Nidetzky B FEBS Lett; 2006 Jul; 580(16):3905-10. PubMed ID: 16797542 [TBL] [Abstract][Full Text] [Related]
4. Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase. Mueller M; Nidetzky B FEBS Lett; 2007 Aug; 581(20):3814-8. PubMed ID: 17659283 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
6. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi. Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616 [TBL] [Abstract][Full Text] [Related]
7. Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52→Ala and Phe52→Asn mutants. Wildberger P; Luley-Goedl C; Nidetzky B FEBS Lett; 2011 Feb; 585(3):499-504. PubMed ID: 21219904 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J; Auld DS Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337 [TBL] [Abstract][Full Text] [Related]
9. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and alpha,alpha-trehalose phosphorylase. Goedl C; Schwarz A; Mueller M; Brecker L; Nidetzky B Carbohydr Res; 2008 Aug; 343(12):2032-40. PubMed ID: 18346723 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
12. Probing the active site of Corynebacterium callunae starch phosphorylase through the characterization of wild-type and His334-->Gly mutant enzymes. Schwarz A; Brecker L; Nidetzky B FEBS J; 2007 Oct; 274(19):5105-15. PubMed ID: 17803683 [TBL] [Abstract][Full Text] [Related]
13. Glycosynthase activity of Bacillus licheniformis 1,3-1,4-beta-glucanase mutants: specificity, kinetics, and mechanism. Faijes M; Pérez X; Pérez O; Planas A Biochemistry; 2003 Nov; 42(45):13304-18. PubMed ID: 14609341 [TBL] [Abstract][Full Text] [Related]
14. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase. Hofstein HA; Feng Y; Anderson VE; Tonge PJ Biochemistry; 1999 Jul; 38(29):9508-16. PubMed ID: 10413528 [TBL] [Abstract][Full Text] [Related]
15. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
19. Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Paal K; Ito M; Withers SG Biochem J; 2004 Feb; 378(Pt 1):141-9. PubMed ID: 14561218 [TBL] [Abstract][Full Text] [Related]
20. Active site of epoxide hydrolases revisited: a noncanonical residue in potato StEH1 promotes both formation and breakdown of the alkylenzyme intermediate. Thomaeus A; Carlsson J; Aqvist J; Widersten M Biochemistry; 2007 Mar; 46(9):2466-79. PubMed ID: 17284015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]