These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17233631)
1. Evaluation of viral removal by nanofiltration using real-time quantitative polymerase chain reaction. Zhao X; Bailey MR; Emery WR; Lambooy PK; Chen D Biotechnol Appl Biochem; 2007 Jun; 47(Pt 2):97-104. PubMed ID: 17233631 [TBL] [Abstract][Full Text] [Related]
2. Real time quantitative PCR as a method to evaluate xenotropic murine leukemia virus removal during pharmaceutical protein purification. Shi L; Chen Q; Norling LA; Lau AS; Krejci S; Xu Y Biotechnol Bioeng; 2004 Sep; 87(7):884-96. PubMed ID: 15334415 [TBL] [Abstract][Full Text] [Related]
3. Multiplex RT Q-PCR assay for simultaneous quantification of three viruses used for validation of virus clearance by biopharmaceutical production. Lute S; Wang H; Sanchez D; Barletta J; Chen Q; Brorson K Biologicals; 2009 Oct; 37(5):331-7. PubMed ID: 19683941 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of infectivity and reverse transcriptase real-time polymerase chain reaction assays for detection of xenotropic murine leukemia virus used in virus clearance validation. Anwaruzzaman M; Wang W; Wang E; Erfe L; Lee J; Liu S Biologicals; 2015 Jul; 43(4):256-65. PubMed ID: 25997567 [TBL] [Abstract][Full Text] [Related]
5. Removal of small non-enveloped viruses by nanofiltration. Yokoyama T; Murai K; Murozuka T; Wakisaka A; Tanifuji M; Fujii N; Tomono T Vox Sang; 2004 May; 86(4):225-9. PubMed ID: 15144526 [TBL] [Abstract][Full Text] [Related]
7. Development of a real-time quantitative reverse transcriptase PCR assay for detection of the Friend leukemia virus load in murine plasma. He JY; Cheng HJ; Wang YF; Zhu YT; Li GQ J Virol Methods; 2008 Feb; 147(2):345-50. PubMed ID: 18068233 [TBL] [Abstract][Full Text] [Related]
8. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture. de Wit C; Fautz C; Xu Y Biologicals; 2000 Sep; 28(3):137-48. PubMed ID: 10964440 [TBL] [Abstract][Full Text] [Related]
9. Real time quantitative PCR as a method to evaluate simian virus 40 removal during pharmaceutical protein purification. Shi L; Norling LA; Lau AS; Krejci S; Laney AJ; Xu Y Biologicals; 1999 Sep; 27(3):253-62. PubMed ID: 10652180 [TBL] [Abstract][Full Text] [Related]
10. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives. Kreil TR; Wieser A; Berting A; Spruth M; Medek C; Pölsler G; Gaida T; Hämmerle T; Teschner W; Schwarz HP; Barrett PN Transfusion; 2006 Jul; 46(7):1143-51. PubMed ID: 16836561 [TBL] [Abstract][Full Text] [Related]
11. A comparison of methods for the estimation of retroviral burden. Bierley ST; Raineri R; Poiley JA; Morgan EM Dev Biol Stand; 1996; 88():163-5. PubMed ID: 9119132 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a quantitative product-enhanced reverse transcriptase assay to monitor retrovirus in mAb cell-culture. Brorson K; Xu Y; Swann PG; Hamilton E; Mustafa M; de Wit C; Norling LA; Stein KE Biologicals; 2002 Mar; 30(1):15-26. PubMed ID: 11846426 [TBL] [Abstract][Full Text] [Related]
13. Quantitation of defective and ecotropic viruses during LP-BM5 infection by real time PCR and RT-PCR. Paun A; Shaw K; Fisher S; Sammels LM; Watson MW; Beilharz MW J Virol Methods; 2005 Mar; 124(1-2):57-63. PubMed ID: 15664051 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous detection of different respiratory virus by a multiplex reverse transcription polymerase chain reaction combined with flow-through reverse dot blotting assay. Li PQ; Yang ZF; Chen JX; Muller CP; Zhang J; Wang DF; Zhang R; He YS Diagn Microbiol Infect Dis; 2008 Sep; 62(1):44-51. PubMed ID: 18639996 [TBL] [Abstract][Full Text] [Related]
15. Quantification of endogenous and exogenous feline leukemia virus sequences by real-time PCR assays. Tandon R; Cattori V; Willi B; Lutz H; Hofmann-Lehmann R Vet Immunol Immunopathol; 2008 May; 123(1-2):129-33. PubMed ID: 18295344 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of nanofiltration in removing small non-enveloped viruses from three different plasma-derived products. Menconi MC; Maggi F; Zakrzewska K; Salotti V; Giovacchini P; Farina C; Andreoli E; Corcioli F; Bendinelli M; Azzi A Transfus Med; 2009 Aug; 19(4):213-7. PubMed ID: 19706139 [TBL] [Abstract][Full Text] [Related]
17. Clearance of murine leukaemia virus from monoclonal antibody solution by a hydrophilic PVDF microporous membrane filter. Aranha-Creado H; Peterson J; Huang PY Biologicals; 1998 Jun; 26(2):167-72. PubMed ID: 9811524 [TBL] [Abstract][Full Text] [Related]
18. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus. Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156 [TBL] [Abstract][Full Text] [Related]
19. A sensitive one-step real-time RT-PCR method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera. Kukielka D; Esperón F; Higes M; Sánchez-Vizcaíno JM J Virol Methods; 2008 Feb; 147(2):275-81. PubMed ID: 17964669 [TBL] [Abstract][Full Text] [Related]
20. Temperature inactivation of Feline calicivirus vaccine strain FCV F-9 in comparison with human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction-A novel method for predicting virus infectivity. Topping JR; Schnerr H; Haines J; Scott M; Carter MJ; Willcocks MM; Bellamy K; Brown DW; Gray JJ; Gallimore CI; Knight AI J Virol Methods; 2009 Mar; 156(1-2):89-95. PubMed ID: 19028524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]