These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti. Chen EJ; Sabio EA; Long SR Mol Microbiol; 2008 Sep; 69(5):1290-303. PubMed ID: 18631237 [TBL] [Abstract][Full Text] [Related]
24. Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. de las Nieves Peltzer M; Roques N; Poinsot V; Aguilar OM; Batut J; Capela D Mol Plant Microbe Interact; 2008 Sep; 21(9):1232-41. PubMed ID: 18700827 [TBL] [Abstract][Full Text] [Related]
25. A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. de Bruijn FJ; Rossbach S; Bruand C; Parrish JR Environ Microbiol; 2006 Aug; 8(8):1371-81. PubMed ID: 16872401 [TBL] [Abstract][Full Text] [Related]
26. Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Tomlinson AD; Ramey-Hartung B; Day TW; Merritt PM; Fuqua C Microbiology (Reading); 2010 Sep; 156(Pt 9):2670-2681. PubMed ID: 20576688 [TBL] [Abstract][Full Text] [Related]
27. Genetic analysis of the rkp-3 gene region in Sinorhizobium meliloti 41: rkpY directs capsular polysaccharide synthesis to KR5 antigen production. Pálvölgyi A; Deák V; Poinsot V; Nagy T; Nagy E; Kerepesi I; Putnoky P Mol Plant Microbe Interact; 2009 Nov; 22(11):1422-30. PubMed ID: 19810811 [TBL] [Abstract][Full Text] [Related]
28. Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Wei W; Jiang J; Li X; Wang L; Yang SS Lett Appl Microbiol; 2004; 39(3):278-83. PubMed ID: 15287875 [TBL] [Abstract][Full Text] [Related]
29. The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY. Bertram-Drogatz PA; Quester I; Becker A; Pühler A Mol Gen Genet; 1998 Feb; 257(4):433-41. PubMed ID: 9529524 [TBL] [Abstract][Full Text] [Related]
30. The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti. Glenn SA; Gurich N; Feeney MA; González JE J Bacteriol; 2007 Oct; 189(19):7077-88. PubMed ID: 17644606 [TBL] [Abstract][Full Text] [Related]
31. Autoregulation of Sinorhizobium meliloti exoR gene expression. Lu HY; Cheng HP Microbiology (Reading); 2010 Jul; 156(Pt 7):2092-2101. PubMed ID: 20413557 [TBL] [Abstract][Full Text] [Related]
32. Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Becker A; Küster H; Niehaus K; Pühler A Mol Gen Genet; 1995 Dec; 249(5):487-97. PubMed ID: 8544814 [TBL] [Abstract][Full Text] [Related]
33. [Transcriptional regulation of noeAB from Sinorhizobium meliloti 042BM]. Du BH; Wang L; Li XH; Qi SW; Yang SS Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):339-43. PubMed ID: 15989222 [TBL] [Abstract][Full Text] [Related]
34. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Becker A; Niehaus K; Pühler A Mol Microbiol; 1995 Apr; 16(2):191-203. PubMed ID: 7565082 [TBL] [Abstract][Full Text] [Related]
35. Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. Rüberg S; Pühler A; Becker A Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():603-611. PubMed ID: 10217494 [TBL] [Abstract][Full Text] [Related]
36. Gene SMb21071 of plasmid pSymB is required for osmoadaptation of Sinorhizobium meliloti 1021 and is implicated in modifications of cell surface polysaccharides structure in response to hyperosmotic stress. Reguera M; Lloret J; Margaret I; Vinardell JM; Martín M; Buendía A; Rivilla R; Ruiz-Sainz JE; Bonilla I; Bolaños L Can J Microbiol; 2009 Oct; 55(10):1145-52. PubMed ID: 19935886 [TBL] [Abstract][Full Text] [Related]
38. Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. Grosse C; Friedrich S; Nies DH J Mol Microbiol Biotechnol; 2007; 12(3-4):227-40. PubMed ID: 17587871 [TBL] [Abstract][Full Text] [Related]
39. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Pobigaylo N; Szymczak S; Nattkemper TW; Becker A Mol Plant Microbe Interact; 2008 Feb; 21(2):219-31. PubMed ID: 18184066 [TBL] [Abstract][Full Text] [Related]