These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 17233674)
41. Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Keller M; Roxlau A; Weng WM; Schmidt M; Quandt J; Niehaus K; Jording D; Arnold W; Pühler A Mol Plant Microbe Interact; 1995; 8(2):267-77. PubMed ID: 7756693 [TBL] [Abstract][Full Text] [Related]
42. The ntrPR operon of Sinorhizobium meliloti is organized and functions as a toxin-antitoxin module. Bodogai M; Ferenczi S; Bashtovyy D; Miclea P; Papp P; Dusha I Mol Plant Microbe Interact; 2006 Jul; 19(7):811-22. PubMed ID: 16838793 [TBL] [Abstract][Full Text] [Related]
43. Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021. Hawkins JP; Geddes BA; Oresnik IJ Mol Plant Microbe Interact; 2017 Dec; 30(12):1009-1019. PubMed ID: 28871850 [TBL] [Abstract][Full Text] [Related]
44. The Rhizobium meliloti exoK gene and prsD/prsE/exsH genes are components of independent degradative pathways which contribute to production of low-molecular-weight succinoglycan. York GM; Walker GC Mol Microbiol; 1997 Jul; 25(1):117-34. PubMed ID: 11902715 [TBL] [Abstract][Full Text] [Related]
45. [Cloning, deletion and functional analysis of noeA from Sinorhizobium meliloti 042BM]. Du BH; Jiang JQ; Li XH; Wang L; Yang SS Wei Sheng Wu Xue Bao; 2005 Apr; 45(2):195-200. PubMed ID: 15989259 [TBL] [Abstract][Full Text] [Related]
47. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. Bustamante JA; Ceron JS; Gao IT; Ramirez HA; Aviles MV; Bet Adam D; Brice JR; Cuellar RA; Dockery E; Jabagat MK; Karp DG; Lau JK; Li S; Lopez-Magaña R; Moore RR; Morin BKR; Nzongo J; Rezaeihaghighi Y; Sapienza-Martinez J; Tran TTK; Huang Z; Duthoy AJ; Barnett MJ; Long SR; Chen JC PLoS Genet; 2023 Oct; 19(10):e1010776. PubMed ID: 37871041 [TBL] [Abstract][Full Text] [Related]
48. Rhizobium common nod genes are required for biofilm formation. Fujishige NA; Lum MR; De Hoff PL; Whitelegge JP; Faull KF; Hirsch AM Mol Microbiol; 2008 Feb; 67(3):504-15. PubMed ID: 18086203 [TBL] [Abstract][Full Text] [Related]
49. The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR. Prange A; Engelhardt H; Trüper HG; Dahl C Arch Microbiol; 2004 Oct; 182(2-3):165-74. PubMed ID: 15340792 [TBL] [Abstract][Full Text] [Related]
50. The symbiosis regulator CbrA modulates a complex regulatory network affecting the flagellar apparatus and cell envelope proteins. Gibson KE; Barnett MJ; Toman CJ; Long SR; Walker GC J Bacteriol; 2007 May; 189(9):3591-602. PubMed ID: 17237174 [TBL] [Abstract][Full Text] [Related]
51. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. Glucksmann MA; Reuber TL; Walker GC J Bacteriol; 1993 Nov; 175(21):7045-55. PubMed ID: 8226646 [TBL] [Abstract][Full Text] [Related]
52. Characterization of Brucella abortus sigma factor sigma54 (rpoN): genetic complementation of Sinorhizobium meliloti ntrA mutant. Iannino F; Ugalde RA; Iñón de Iannino N Microb Pathog; 2008; 45(5-6):394-402. PubMed ID: 18926896 [TBL] [Abstract][Full Text] [Related]
53. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
54. Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression. Mostafavi M; Lewis JC; Saini T; Bustamante JA; Gao IT; Tran TT; King SN; Huang Z; Chen JC BMC Microbiol; 2014 Nov; 14():295. PubMed ID: 25420869 [TBL] [Abstract][Full Text] [Related]
55. The 5' untranslated region of fruA mRNA is required for translational enhancement of FruA synthesis during Myxococcus xanthus development. Ding N; Zheng Y; Wu Q; Mao X Arch Microbiol; 2008 Mar; 189(3):279-88. PubMed ID: 17992513 [TBL] [Abstract][Full Text] [Related]
56. RIVET-a tool for in vivo analysis of symbiotically relevant gene expression in Sinorhizobium meliloti. Gao M; Teplitski M Mol Plant Microbe Interact; 2008 Feb; 21(2):162-70. PubMed ID: 18184060 [TBL] [Abstract][Full Text] [Related]
57. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435 [TBL] [Abstract][Full Text] [Related]
59. Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. Bittner AN; Foltz A; Oke V J Bacteriol; 2007 Mar; 189(5):1884-9. PubMed ID: 17158666 [TBL] [Abstract][Full Text] [Related]
60. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Rebets Y; Dutko L; Ostash B; Luzhetskyy A; Kulachkovskyy O; Yamaguchi T; Nakamura T; Bechthold A; Fedorenko V Arch Microbiol; 2008 Feb; 189(2):111-20. PubMed ID: 17786405 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]