BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17233675)

  • 1. Effect of acidic pH on the ability of Clostridium sporogenes MD1 to take up and retain intracellular potassium.
    Flythe MD; Russell JB
    FEMS Microbiol Lett; 2007 Feb; 267(1):46-50. PubMed ID: 17233675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials.
    Flythe MD; Russell JB
    FEMS Microbiol Ecol; 2004 Feb; 47(2):215-22. PubMed ID: 19712336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation acids inhibit amino acid deamination by Clostridium sporogenes MD1 via a mechanism involving a decline in intracellular glutamate rather than protonmotive force.
    Flythe MD; Russell JB
    Microbiology (Reading); 2006 Sep; 152(Pt 9):2619-2624. PubMed ID: 16946257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for proton motive force dependent transport of selenite by Clostridium pasteurianum.
    Bryant RD; Laishley EJ
    Can J Microbiol; 1989 Apr; 35(4):481-6. PubMed ID: 2743219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679.
    Okereke A; Montville TJ
    Appl Environ Microbiol; 1992 Aug; 58(8):2463-7. PubMed ID: 1325140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Proton-potassium exchange in Escherichia coli].
    Durgar'ian SS; Martirosov SM
    Biofizika; 1980; 25(3):469-72. PubMed ID: 6994822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum.
    Riebeling V; Thauer RK; Jungermann K
    Eur J Biochem; 1975 Jul; 55(2):445-53. PubMed ID: 237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux.
    Zakharyan E; Trchounian A
    FEMS Microbiol Lett; 2001 Oct; 204(1):61-4. PubMed ID: 11682179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at a low pH.
    Trchounian A; Kobayashi H
    FEBS Lett; 1999 Mar; 447(2-3):144-8. PubMed ID: 10214935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force.
    Bakker EP; Harold FM
    J Biol Chem; 1980 Jan; 255(2):433-40. PubMed ID: 6766127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion.
    Bond DR; Russell JB
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Growth and proton-potassium exchange in Enterococcus hirae: protonophore effect and the role of oxidation-reduction potential].
    Poladian A; Kirakosian G; Trchunian A
    Biofizika; 2006; 51(3):499-503. PubMed ID: 16808350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential.
    Glaser TA; Mukkada AJ
    Mol Biochem Parasitol; 1992 Mar; 51(1):1-8. PubMed ID: 1533014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second system for potassium transport in Streptococcus faecalis.
    Kobayashi H
    J Bacteriol; 1982 May; 150(2):506-11. PubMed ID: 6279560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mode of action of the bacteriocin butyricin 7423. Effects on membrane potential and potassium-ion accumulation in Clostridium pasteurianum.
    Clarke DJ; Morley CD; Kell DB; Morris JG
    Eur J Biochem; 1982 Sep; 127(1):105-16. PubMed ID: 6216104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.