BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17233920)

  • 1. Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila.
    Bai Y; Casola C; Feschotte C; Betrán E
    Genome Biol; 2007; 8(1):R11. PubMed ID: 17233920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of young human genes after a burst of retroposition in primates.
    Marques AC; Dupanloup I; Vinckenbosch N; Reymond A; Kaessmann H
    PLoS Biol; 2005 Nov; 3(11):e357. PubMed ID: 16201836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retroposed new genes out of the X in Drosophila.
    Betrán E; Thornton K; Long M
    Genome Res; 2002 Dec; 12(12):1854-9. PubMed ID: 12466289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary origin of regulatory regions of retrogenes in Drosophila.
    Bai Y; Casola C; Betrán E
    BMC Genomics; 2008 May; 9():241. PubMed ID: 18498650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast protein evolution and germ line expression of a Drosophila parental gene and its young retroposed paralog.
    Betrán E; Bai Y; Motiwale M
    Mol Biol Evol; 2006 Nov; 23(11):2191-202. PubMed ID: 16916943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality of regulatory elements in Drosophila retrogenes.
    Bai Y; Casola C; Betrán E
    Genomics; 2009 Jan; 93(1):83-9. PubMed ID: 18848618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the origin of new genes in Drosophila.
    Zhou Q; Zhang G; Zhang Y; Xu S; Zhao R; Zhan Z; Li X; Ding Y; Yang S; Wang W
    Genome Res; 2008 Sep; 18(9):1446-55. PubMed ID: 18550802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergently recruited nuclear transport retrogenes are male biased in expression and evolving under positive selection in Drosophila.
    Tracy C; Río J; Motiwale M; Christensen SM; Betrán E
    Genetics; 2010 Apr; 184(4):1067-76. PubMed ID: 20065068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drcd-1 related: a positively selected spermatogenesis retrogene in Drosophila.
    Quezada-Díaz JE; Muliyil T; Río J; Betrán E
    Genetica; 2010 Oct; 138(9-10):925-37. PubMed ID: 20694743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relocation facilitates the acquisition of short cis-regulatory regions that drive the expression of retrogenes during spermatogenesis in Drosophila.
    Sorourian M; Kunte MM; Domingues S; Gallach M; Özdil F; Río J; Betrán E
    Mol Biol Evol; 2014 Aug; 31(8):2170-80. PubMed ID: 24855141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species.
    Wang W; Yu H; Long M
    Nat Genet; 2004 May; 36(5):523-7. PubMed ID: 15064762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rapid generation of chimerical genes expanding protein diversity in zebrafish.
    Fu B; Chen M; Zou M; Long M; He S
    BMC Genomics; 2010 Nov; 11():657. PubMed ID: 21106061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmental dataset and whole body expression data do not support the hypothesis that non-random movement is an intrinsic property of Drosophila retrogenes.
    Vibranovski MD; Zhang YE; Kemkemer C; VanKuren NW; Lopes HF; Karr TL; Long M
    BMC Evol Biol; 2012 Sep; 12():169. PubMed ID: 22950647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomic analysis of retrogene repertoire in two green algae Volvox carteri and Chlamydomonas reinhardtii.
    Jąkalski M; Takeshita K; Deblieck M; Koyanagi KO; Makałowska I; Watanabe H; Makałowski W
    Biol Direct; 2016 Aug; 11():35. PubMed ID: 27487948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary origin and functions of retrogene introns.
    Fablet M; Bueno M; Potrzebowski L; Kaessmann H
    Mol Biol Evol; 2009 Sep; 26(9):2147-56. PubMed ID: 19553367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High rate of chimeric gene origination by retroposition in plant genomes.
    Wang W; Zheng H; Fan C; Li J; Shi J; Cai Z; Zhang G; Liu D; Zhang J; Vang S; Lu Z; Wong GK; Long M; Wang J
    Plant Cell; 2006 Aug; 18(8):1791-802. PubMed ID: 16829590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and analysis of retrogenes in the East Asian nematode Caenorhabditis sp. 5 genome.
    Zhou K; Zou M; Duan M; He S; Wang G
    Genome; 2015 Jul; 58(7):349-55. PubMed ID: 26284988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup.
    Parsch J; Meiklejohn CD; Hauschteck-Jungen E; Hunziker P; Hartl DL
    Mol Biol Evol; 2001 May; 18(5):801-11. PubMed ID: 11319264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Genomics Reveals Two Major Bouts of Gene Retroposition Coinciding with Crucial Periods of Symbiodinium Evolution.
    Song B; Morse D; Song Y; Fu Y; Lin X; Wang W; Cheng S; Chen W; Liu X; Lin S
    Genome Biol Evol; 2017 Aug; 9(8):2037-2047. PubMed ID: 28903461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary fate of retroposed gene copies in the human genome.
    Vinckenbosch N; Dupanloup I; Kaessmann H
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3220-5. PubMed ID: 16492757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.