BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 17234032)

  • 21. Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors.
    Huang S; Yang H; Lakshmanan RS; Johnson ML; Wan J; Chen IH; Wikle HC; Petrenko VA; Barbaree JM; Chin BA
    Biosens Bioelectron; 2009 Feb; 24(6):1730-6. PubMed ID: 18954970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitive and selective detection of mycoplasma in cell culture samples using cantilever sensors.
    Xu S; Sharma H; Mutharasan R
    Biotechnol Bioeng; 2010 Apr; 105(6):1069-77. PubMed ID: 20014143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger.
    Murdoch LE; McKenzie K; Maclean M; Macgregor SJ; Anderson JG
    Fungal Biol; 2013; 117(7-8):519-27. PubMed ID: 23931117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic System for Rapid Detection of Airborne Pathogenic Fungal Spores.
    Li X; Zhang X; Liu Q; Zhao W; Liu S; Sui G
    ACS Sens; 2018 Oct; 3(10):2095-2103. PubMed ID: 30264565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min.
    Campbell GA; Mutharasan R
    Biosens Bioelectron; 2006 Jul; 22(1):78-85. PubMed ID: 16423521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated metal clad leaky waveguide sensor for detection of bacteria.
    Zourob M; Mohr S; Treves Brown BJ; Fielden PR; McDonnell MB; Goddard NJ
    Anal Chem; 2005 Jan; 77(1):232-42. PubMed ID: 15623301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Characterization of specific monoclonal antibodies to Aspergillus conidia by flow cytometry].
    YU N; YUAN XP; JIN J; HAO W; WANG YF; CHE XY
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Mar; 31(3):487-9. PubMed ID: 21421489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation.
    Taylor-Edmonds L; Lichi T; Rotstein-Mayer A; Mamane H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):341-7. PubMed ID: 25723059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation.
    Esbelin J; Mallea S; Ram AF; Carlin F
    Photochem Photobiol; 2013; 89(3):758-61. PubMed ID: 23278805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of surface properties on the strength of attachment of fungal spores using AFM perpendicular force measurements.
    Whitehead KA; Deisenroth T; Preuss A; Liauw CM; Verran J
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):483-9. PubMed ID: 21050728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic studies on the aggregation of Aspergillus niger conidia.
    Grimm LH; Kelly S; Hengstler J; Göbel A; Krull R; Hempel DC
    Biotechnol Bioeng; 2004 Jul; 87(2):213-8. PubMed ID: 15236250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the origin of the electrostatic surface potential of Aspergillus niger spores in acidic environments.
    Wargenau A; Fleissner A; Bolten CJ; Rohde M; Kampen I; Kwade A
    Res Microbiol; 2011 Dec; 162(10):1011-7. PubMed ID: 21835241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of C. globosum spores in house dust samples.
    Shi C; Provost NB; Desroches T; Miller JD
    Ann Agric Environ Med; 2014; 21(3):525-30. PubMed ID: 25292122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near real-time detection of Cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor.
    Campbell GA; Mutharasan R
    Biosens Bioelectron; 2008 Feb; 23(7):1039-45. PubMed ID: 18054480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses in the mycelial growth of Aspergillus niger isolates to arsenic contaminated environments and their resistance to exogenic metal stress.
    Bucková M; Godocíková J; Polek B
    J Basic Microbiol; 2007 Aug; 47(4):295-300. PubMed ID: 17647207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of farnesol on the morphogenesis of Aspergillus niger.
    Lorek J; Pöggeler S; Weide MR; Breves R; Bockmühl DP
    J Basic Microbiol; 2008 Apr; 48(2):99-103. PubMed ID: 18383232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micromechanical detection of proteins using aptamer-based receptor molecules.
    Savran CA; Knudsen SM; Ellington AD; Manalis SR
    Anal Chem; 2004 Jun; 76(11):3194-8. PubMed ID: 15167801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples.
    Lee HJ; Namkoong K; Cho EC; Ko C; Park JC; Lee SS
    Biosens Bioelectron; 2009 Jun; 24(10):3120-5. PubMed ID: 19423329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium.
    Guntupalli R; Hu J; Lakshmanan RS; Huang TS; Barbaree JM; Chin BA
    Biosens Bioelectron; 2007 Feb; 22(7):1474-9. PubMed ID: 16930986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.