BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1723412)

  • 1. Calcium transport sensitive to ruthenium red in cytochrome oxidase vesicles reconstituted with mitochondrial proteins.
    Zazueta C; Holguín JA; Ramírez J
    J Bioenerg Biomembr; 1991 Dec; 23(6):889-902. PubMed ID: 1723412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of mitochondrial Ca2+ uptake by mersalyl.
    Chavez E; Holguin JA; Zazueta C; Bravo C
    Int J Biochem; 1989; 21(11):1241-4. PubMed ID: 2482204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and localization of two forms of active Ca2+ transport in vesicles derived from rat submandibular glands.
    Hurley TW; Martinez JR
    Cell Calcium; 1986 Feb; 7(1):49-59. PubMed ID: 2420466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ transport against its electrochemical gradient in cytochrome oxidase vesicles reconstituted with mitochondrial hydrophobic proteins.
    Rosier RN; Tucker DA; Meerdink S; Jain I; Gunter TE
    Arch Biochem Biophys; 1981 Sep; 210(2):549-64. PubMed ID: 6272637
    [No Abstract]   [Full Text] [Related]  

  • 5. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function.
    Gincel D; Zaid H; Shoshan-Barmatz V
    Biochem J; 2001 Aug; 358(Pt 1):147-55. PubMed ID: 11485562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium.
    Wingrove DE; Gunter TE
    J Biol Chem; 1986 Nov; 261(32):15166-71. PubMed ID: 2429966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues.
    Crompton M; Moser R; Lüdi H; Carafoli E
    Eur J Biochem; 1978 Jan; 82(1):25-31. PubMed ID: 23291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ruthenium red inhibits energy-dependent and passive Ca2+ transport in permeabilized smooth muscle cells].
    Shinlova OP; Kosterin SA; Veklich TA
    Biokhimiia; 1996 Aug; 61(8):1440-7. PubMed ID: 8962918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The action of Nupercaine on calcium efflux from rat liver mitochondria.
    Dawson AP; Fulton DV
    Biochem J; 1980 Jun; 188(3):749-55. PubMed ID: 6162452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium uptake by reconstituted vesicles is mediated by a chymotrypsin-sensitive peptide associated with cytochrome oxidase.
    Saltzgaber-Müller J; Douglas M; Racker E
    FEBS Lett; 1980 Oct; 120(1):49-52. PubMed ID: 6254805
    [No Abstract]   [Full Text] [Related]  

  • 11. Enrichment of ruthenium red-sensitive Ca2+ transport in a population of heavy mitochondria isolated from flight-muscle of Lucilia cuprina. Further evidence for its heterogeneous distribution in the inner mitochondrial membrane.
    Smith RL; Bygrave FL
    FEBS Lett; 1978 Nov; 95(2):303-6. PubMed ID: 720623
    [No Abstract]   [Full Text] [Related]  

  • 12. Experiments on the mechanism of the inhibition of mitochondrial Ca2+ transport by La3+ and ruthenium red.
    Niggli V; Gazzotti P; Carafoli E
    Experientia; 1978 Sep; 34(7):1136-7. PubMed ID: 720498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nature of endogenous proton conductance of the inner mitochondrial membrane. Role of Ca2+ transport system in proton transfer].
    Zinov'eva MV; Leĭkin IuN; Petushkova NA
    Biokhimiia; 1981 Oct; 46(10):1896-904. PubMed ID: 6171308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine.
    Pezzi L
    Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria.
    Sordahl LA
    Arch Biochem Biophys; 1975 Mar; 167(1):104-15. PubMed ID: 1093479
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium transport in human term placental mitochondria.
    Flores-Herrera O; Pardo JP; Espinosa-García MT; Martínez F
    Biochem Mol Biol Int; 1995 Apr; 35(4):793-801. PubMed ID: 7542958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation in liver mitochondria of Ruthenium Red-sensitive calcium-ion-transport activity and the influence of glucagon administration in vivo and in utero.
    Prpić V; Bygrave FL
    Biochem J; 1981 Apr; 196(1):207-16. PubMed ID: 6171266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Ca2+ transport in Euglena gracilis mitochondria.
    Uribe A; Chávez E; Jiménez M; Zazueta C; Moreno-Sánchez R
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):107-16. PubMed ID: 7516710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a calcium/proton antiporter and an electrogenic calcium transporter in membrane vesicles from Azotobacter vinelandii.
    Zimniak P; Barnes EM
    J Biol Chem; 1980 Nov; 255(21):10140-3. PubMed ID: 6159352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium red-insensitive Ca2+ uptake and release by mitochondria.
    Cockrell RS
    Arch Biochem Biophys; 1985 Nov; 243(1):70-9. PubMed ID: 2415064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.