These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 17234234)
1. Cu(II) binding by dried biomass of red, green and brown macroalgae. Murphy V; Hughes H; McLoughlin P Water Res; 2007 Feb; 41(4):731-40. PubMed ID: 17234234 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of chromium biosorption by red, green and brown seaweed biomass. Murphy V; Hughes H; McLoughlin P Chemosphere; 2008 Jan; 70(6):1128-34. PubMed ID: 17884133 [TBL] [Abstract][Full Text] [Related]
3. A physicochemical study of Al(+3) interactions with edible seaweed biomass in acidic waters. Lodeiro P; López-García M; Herrero L; Barriada JL; Herrero R; Cremades J; Bárbara I; Sastre de Vicente ME J Food Sci; 2012 Sep; 77(9):C987-93. PubMed ID: 22900947 [TBL] [Abstract][Full Text] [Related]
4. Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseira barbata. Yalçın S; Sezer S; Apak R Environ Sci Pollut Res Int; 2012 Sep; 19(8):3118-25. PubMed ID: 22875422 [TBL] [Abstract][Full Text] [Related]
5. Variability in iodine in temperate seaweeds and iodine accumulation kinetics of Fucus vesiculosus and Laminaria digitata (Phaeophyceae, Ochrophyta). Nitschke U; Walsh P; McDaid J; Stengel DB J Phycol; 2018 Feb; 54(1):114-125. PubMed ID: 29130494 [TBL] [Abstract][Full Text] [Related]
6. Removal of Pb(2+) by biomass of marine algae. Hamdy AA Curr Microbiol; 2000 Oct; 41(4):239-45. PubMed ID: 10977889 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Biochemical and Nutritional Contents of Some Cultivated Seaweeds Under Laboratory Conditions. Ismail MM; El-Sheekh M J Diet Suppl; 2018 May; 15(3):318-329. PubMed ID: 28792270 [TBL] [Abstract][Full Text] [Related]
8. Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel (Algeria). Laib E; Leghouchi E Environ Monit Assess; 2012 Mar; 184(3):1711-8. PubMed ID: 21755430 [TBL] [Abstract][Full Text] [Related]
9. Comparative study on metal biosorption by two macroalgae in saline waters: single and ternary systems. Figueira P; Henriques B; Teixeira A; Lopes CB; Reis AT; Monteiro RJ; Duarte AC; Pardal MA; Pereira E Environ Sci Pollut Res Int; 2016 Jun; 23(12):11985-97. PubMed ID: 26961530 [TBL] [Abstract][Full Text] [Related]
10. Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions. Senthilkumar R; Vijayaraghavan K; Thilakavathi M; Iyer PV; Velan M J Hazard Mater; 2006 Aug; 136(3):791-9. PubMed ID: 16487654 [TBL] [Abstract][Full Text] [Related]
11. Metal accumulation and toxicity measured by PAM--chlorophyll fluorescence in seven species of marine macroalgae. Baumann HA; Morrison L; Stengel DB Ecotoxicol Environ Saf; 2009 May; 72(4):1063-75. PubMed ID: 19106005 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. El-Naggar NE; Hamouda RA; Saddiq AA; Alkinani MH Sci Rep; 2021 Feb; 11(1):3555. PubMed ID: 33574404 [TBL] [Abstract][Full Text] [Related]
13. Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species. Murphy V; Hughes H; McLoughlin P J Hazard Mater; 2009 Jul; 166(1):318-26. PubMed ID: 19121898 [TBL] [Abstract][Full Text] [Related]
14. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis. Jayakumar R; Rajasimman M; Karthikeyan C Ecotoxicol Environ Saf; 2015 Nov; 121():199-210. PubMed ID: 25866206 [TBL] [Abstract][Full Text] [Related]
15. Biosorption of heavy metals by marine algae. Hamdy AA Curr Microbiol; 2000 Oct; 41(4):232-8. PubMed ID: 10977888 [TBL] [Abstract][Full Text] [Related]
16. Biosorption of Cu(II) from aqueous solution by Fucus serratus: surface characterization and sorption mechanisms. Ahmady-Asbchin S; Andrès Y; Gérente C; Cloirec PL Bioresour Technol; 2008 Sep; 99(14):6150-5. PubMed ID: 18276132 [TBL] [Abstract][Full Text] [Related]
17. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Maehre HK; Malde MK; Eilertsen KE; Elvevoll EO J Sci Food Agric; 2014 Dec; 94(15):3281-90. PubMed ID: 24700148 [TBL] [Abstract][Full Text] [Related]
18. Assessment of marine macroalgae potential for gadolinium removal from contaminated aquatic systems. Ferreira N; Ferreira A; Viana T; Lopes CB; Costa M; Pinto J; Soares J; Pinheiro-Torres J; Henriques B; Pereira E Sci Total Environ; 2020 Dec; 749():141488. PubMed ID: 32829275 [TBL] [Abstract][Full Text] [Related]
19. Bioaccumulation processes for mercury removal from saline waters by green, brown and red living marine macroalgae. Fabre E; Dias M; Henriques B; Viana T; Ferreira N; Soares J; Pinto J; Vale C; Pinheiro-Torres J; Silva CM; Pereira E Environ Sci Pollut Res Int; 2021 Jun; 28(23):30255-30266. PubMed ID: 33586107 [TBL] [Abstract][Full Text] [Related]
20. Negligible effect of potentially toxic elements and rare earth elements on mercury removal from contaminated waters by green, brown and red living marine macroalgae. Fabre E; Dias M; Costa M; Henriques B; Vale C; Lopes CB; Pinheiro-Torres J; Silva CM; Pereira E Sci Total Environ; 2020 Jul; 724():138133. PubMed ID: 32268287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]