BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17234239)

  • 1. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.
    Petersen MA; Sale TC; Reardon KF
    Chemosphere; 2007 Apr; 67(8):1573-81. PubMed ID: 17234239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept.
    Li Z
    Chemosphere; 2004 Jan; 54(3):419-23. PubMed ID: 14575755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs).
    Lai A; Aulenta F; Mingazzini M; Palumbo MT; Papini MP; Verdini R; Majone M
    Chemosphere; 2017 Feb; 169():351-360. PubMed ID: 27886537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes.
    Carter KE; Farrell J
    Environ Sci Technol; 2009 Nov; 43(21):8350-4. PubMed ID: 19924968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically induced reduction of trichloroethene in clay.
    Jin S; Fallgren PH
    J Hazard Mater; 2010 Jan; 173(1-3):200-4. PubMed ID: 19729244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the electrode arrangements on reductive dechlorination of trichloroethylene in an electro-enhanced iron wall.
    Liu CC; Liau SF; Tseng DH
    Environ Technol; 2006 Jun; 27(6):683-93. PubMed ID: 16865924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.
    Bagastyo AY; Radjenovic J; Mu Y; Rozendal RA; Batstone DJ; Rabaey K
    Water Res; 2011 Oct; 45(16):4951-9. PubMed ID: 21802107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low permeability zone remediation of trichloroethene via coupling electrokinetic migration with in situ electrochemical hydrodechlorination.
    Liu B; Li G; Mumford KG; Kueper BH; Zhang F
    Chemosphere; 2020 Jul; 250():126209. PubMed ID: 32113096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes.
    Pikaar I; Rozendal RA; Yuan Z; Keller J; Rabaey K
    Water Res; 2011 Nov; 45(17):5381-8. PubMed ID: 21885081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of pH and current on electrolytic dechlorination of trichloroethylene at a granular-graphite packed electrode.
    Al-Abed SR; Fang Y
    Chemosphere; 2006 Jun; 64(3):462-9. PubMed ID: 16384595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.
    Fallahpour N; Yuan S; Rajic L; Alshawabkeh AN
    Chemosphere; 2016 Feb; 144():59-64. PubMed ID: 26344148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II).
    Jung B; Batchelor B
    Chemosphere; 2008 Mar; 71(4):726-34. PubMed ID: 18068753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
    Li Z; Hanlie H
    Water Res; 2008 Feb; 42(3):605-14. PubMed ID: 17826816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin film trichloroethylene electrochemical sensor.
    Chen MH; Liu CC; Chou TC
    Biosens Bioelectron; 2004 Jul; 20(1):25-32. PubMed ID: 15142573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms.
    Aulenta F; Tocca L; Verdini R; Reale P; Majone M
    Environ Sci Technol; 2011 Oct; 45(19):8444-51. PubMed ID: 21877695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions.
    Barnes RJ; Riba O; Gardner MN; Scott TB; Jackman SA; Thompson IP
    Chemosphere; 2010 Apr; 79(4):448-54. PubMed ID: 20156632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of permanganate oxidation of TCE at low reagent concentrations.
    Woo NC; Hyun SG; Park WW; Lee ES; Schwartz FW
    Environ Technol; 2009 Dec; 30(13):1337-42. PubMed ID: 20088197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.