BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17234401)

  • 21. Response element and coactivator-mediated conformational change of the vitamin D(3) receptor permits sensitive interaction with agonists.
    Herdick M; Bury Y; Quack M; Uskokovic MR; Polly P; Carlberg C
    Mol Pharmacol; 2000 Jun; 57(6):1206-17. PubMed ID: 10825392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms.
    Haussler MR; Jurutka PW; Mizwicki M; Norman AW
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):543-59. PubMed ID: 21872797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1alpha,25-dihydroxyvitamin D3.
    Malinen M; Ryynänen J; Heinäniemi M; Väisänen S; Carlberg C
    Nucleic Acids Res; 2011 Jan; 39(2):502-12. PubMed ID: 20855290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A genomic perspective on vitamin D signaling.
    Carlberg C; Seuter S
    Anticancer Res; 2009 Sep; 29(9):3485-93. PubMed ID: 19667142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SLCO1A2 gene, encoding human organic anion-transporting polypeptide 1A2, is transactivated by the vitamin D receptor.
    Eloranta JJ; Hiller C; Jüttner M; Kullak-Ublick GA
    Mol Pharmacol; 2012 Jul; 82(1):37-46. PubMed ID: 22474172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the human vitamin D3 receptor promoter in breast cancer cells is mediated through Sp1 sites.
    Wietzke JA; Ward EC; Schneider J; Welsh J
    Mol Cell Endocrinol; 2005 Jan; 230(1-2):59-68. PubMed ID: 15664452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the 5-lipoxygenase promoter and characterization of a vitamin D receptor binding site.
    Sorg BL; Klan N; Seuter S; Dishart D; Rådmark O; Habenicht A; Carlberg C; Werz O; Steinhilber D
    Biochim Biophys Acta; 2006 Jul; 1761(7):686-97. PubMed ID: 16750418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitamin D receptor interactions with the rat parathyroid hormone gene: synergistic effects between two negative vitamin D response elements.
    Russell J; Ashok S; Koszewski NJ
    J Bone Miner Res; 1999 Nov; 14(11):1828-37. PubMed ID: 10571682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All natural DR3-type vitamin D response elements show a similar functionality in vitro.
    Toell A; Polly P; Carlberg C
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):301-9. PubMed ID: 11085922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements.
    Swami S; Krishnan AV; Peng L; Lundqvist J; Feldman D
    Endocr Relat Cancer; 2013 Aug; 20(4):565-77. PubMed ID: 23744764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor.
    Thompson PD; Hsieh JC; Whitfield GK; Haussler CA; Jurutka PW; Galligan MA; Tillman JB; Spindler SR; Haussler MR
    J Cell Biochem; 1999 Dec; 75(3):462-80. PubMed ID: 10536369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel interaction between insulin-like growth factor binding protein-6 and the vitamin D receptor inhibits the role of vitamin D3 in osteoblast differentiation.
    Cui J; Ma C; Qiu J; Ma X; Wang X; Chen H; Huang B
    Mol Cell Endocrinol; 2011 May; 338(1-2):84-92. PubMed ID: 21458526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling.
    Lisse TS; Liu T; Irmler M; Beckers J; Chen H; Adams JS; Hewison M
    FASEB J; 2011 Mar; 25(3):937-47. PubMed ID: 21123297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of 1α,25-dihydroxyvitamin D(3)-dependent repression of interleukin-12B.
    Gynther P; Toropainen S; Matilainen JM; Seuter S; Carlberg C; Väisänen S
    Biochim Biophys Acta; 2011 May; 1813(5):810-8. PubMed ID: 21310195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals.
    Ryynänen J; Neme A; Tuomainen TP; Virtanen JK; Voutilainen S; Nurmi T; de Mello VD; Uusitupa M; Carlberg C
    Mol Nutr Food Res; 2014 Oct; 58(10):2036-45. PubMed ID: 24975273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-induced transrepressive function of VDR requires a chromatin remodeling complex, WINAC.
    Kato S; Fujiki R; Kim MS; Kitagawa H
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):372-80. PubMed ID: 17368181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered VDR-mediated transcriptional activity in prostate cancer stroma.
    Hidalgo AA; Paredes R; Garcia VM; Flynn G; Johnson CS; Trump DL; Onate SA
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):731-6. PubMed ID: 17368189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy.
    Heikkinen S; Väisänen S; Pehkonen P; Seuter S; Benes V; Carlberg C
    Nucleic Acids Res; 2011 Nov; 39(21):9181-93. PubMed ID: 21846776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.