BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 17234465)

  • 1. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers.
    Lin K; Chang J; Cheng R
    Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds.
    Li H; Chang J
    Biomaterials; 2004 Nov; 25(24):5473-80. PubMed ID: 15142728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and in vitro bioactivity of bredigite powders.
    Wu C; Chang J
    J Biomater Appl; 2007 Jan; 21(3):251-63. PubMed ID: 16543286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics.
    Pu Y; Huang Y; Qi S; Chen C; Seo HJ
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies.
    Ni S; Lin K; Chang J; Chou L
    J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lithium fluoride and maleic acid on the bioactivity of calcium aluminate cement: Formation of hydroxyapatite in simulated body fluid.
    Oh SH; Choi SY; Lee YK; Kim KN; Choi SH
    J Biomed Mater Res A; 2003 Oct; 67(1):104-11. PubMed ID: 14517867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Mn-Zn ferrite on apatite-wollastonite glass-ceramic (A-W GC).
    Da Li G; Zhou da L; Pan TH; Chen GS; Lin Y; Mao M; Yan G
    Biomed Mater; 2009 Aug; 4(4):045001. PubMed ID: 19525575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration.
    Hurt AP; Getti G; Coleman NJ
    Int J Biol Macromol; 2014 Mar; 64():11-6. PubMed ID: 24296410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivity in in situ hydroxyapatite-polycaprolactone composites.
    Verma D; Katti K; Katti D
    J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive composites consisting of PEEK and calcium silicate powders.
    Kim IY; Sugino A; Kikuta K; Ohtsuki C; Cho SB
    J Biomater Appl; 2009 Aug; 24(2):105-18. PubMed ID: 18757493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering.
    Ni S; Chang J; Chou L
    J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers.
    Li K; Wang J; Liu X; Xiong X; Liu H
    Carbohydr Polym; 2012 Nov; 90(4):1573-81. PubMed ID: 22944418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process.
    Prashantha K; Rashmi BJ; Venkatesha TV; Lee JH
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):340-4. PubMed ID: 16503415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications.
    Gopi D; Nithiya S; Shinyjoy E; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():194-200. PubMed ID: 22446767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of polysulfone-dicalcium silicate composite films.
    Cheng W; Chang J
    J Biomater Appl; 2006 Apr; 20(4):361-76. PubMed ID: 16443620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer.
    Rhee SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.