These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 17234466)
21. Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Hieda J; Todaka Y; Akahori T; Miyazaki T J Mech Behav Biomed Mater; 2012 Jun; 10():235-45. PubMed ID: 22520435 [TBL] [Abstract][Full Text] [Related]
22. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Kikuchi M; Takahashi M; Okuno O Dent Mater; 2006 Jul; 22(7):641-6. PubMed ID: 16221490 [TBL] [Abstract][Full Text] [Related]
23. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060 [TBL] [Abstract][Full Text] [Related]
24. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. Zhao X; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900 [TBL] [Abstract][Full Text] [Related]
26. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy. Wang P; Wu L; Feng Y; Bai J; Zhang B; Song J; Guan S Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():536-542. PubMed ID: 28024619 [TBL] [Abstract][Full Text] [Related]
27. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy. Elmay W; Prima F; Gloriant T; Bolle B; Zhong Y; Patoor E; Laheurte P J Mech Behav Biomed Mater; 2013 Feb; 18():47-56. PubMed ID: 23246554 [TBL] [Abstract][Full Text] [Related]
28. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys. Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657 [TBL] [Abstract][Full Text] [Related]
29. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications. Sheremetyev V; Brailovski V; Prokoshkin S; Inaekyan K; Dubinskiy S Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():935-44. PubMed ID: 26478389 [TBL] [Abstract][Full Text] [Related]
31. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti-28Nb-35.4Zr alloy. Ozan S; Lin J; Li Y; Zhang Y; Munir K; Jiang H; Wen C J Mech Behav Biomed Mater; 2018 Feb; 78():224-234. PubMed ID: 29175491 [TBL] [Abstract][Full Text] [Related]
32. Superelastic and shape memory properties of TixNb3Zr2Ta alloys. Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481 [TBL] [Abstract][Full Text] [Related]
33. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys. da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721 [TBL] [Abstract][Full Text] [Related]
34. Thermomechanical processing of In-containing β-type Ti-Nb alloys. Pilz S; Geissler D; Calin M; Eckert J; Zimmermann M; Freudenberger J; Gebert A J Mech Behav Biomed Mater; 2018 Mar; 79():283-291. PubMed ID: 29348069 [TBL] [Abstract][Full Text] [Related]
35. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys. Wang P; Feng Y; Liu F; Wu L; Guan S Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119 [TBL] [Abstract][Full Text] [Related]
36. Effects of strain rate and temperature on mechanical behaviour of Ti-15 Mo-5 Zr-3 Al alloy. Lee WS; Lin CF; Chen TH; Hwang HH J Mech Behav Biomed Mater; 2008 Oct; 1(4):336-44. PubMed ID: 19627798 [TBL] [Abstract][Full Text] [Related]
37. High strength, low stiffness, porous NiTi with superelastic properties. Greiner C; Oppenheimer SM; Dunand DC Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851 [TBL] [Abstract][Full Text] [Related]
38. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. Lin CW; Ju CP; Chern Lin JH Biomaterials; 2005 Jun; 26(16):2899-907. PubMed ID: 15603785 [TBL] [Abstract][Full Text] [Related]
39. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications. Nnamchi PS; Obayi CS; Todd I; Rainforth MW J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649 [TBL] [Abstract][Full Text] [Related]
40. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications. Afonso CR; Ferrandini PL; Ramirez AJ; Caram R Acta Biomater; 2010 Apr; 6(4):1625-9. PubMed ID: 19913645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]