These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 17234689)

  • 1. Volitional control of neural activity: implications for brain-computer interfaces.
    Fetz EE
    J Physiol; 2007 Mar; 579(Pt 3):571-9. PubMed ID: 17234689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal mechanisms underlying control of a brain-computer interface.
    Hinterberger T; Veit R; Wilhelm B; Weiskopf N; Vatine JJ; Birbaumer N
    Eur J Neurosci; 2005 Jun; 21(11):3169-81. PubMed ID: 15978025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current trends in hardware and software for brain-computer interfaces (BCIs).
    Brunner P; Bianchi L; Guger C; Cincotti F; Schalk G
    J Neural Eng; 2011 Apr; 8(2):025001. PubMed ID: 21436536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-machine interfaces for real-time speech synthesis.
    Guenther FH; Brumberg JS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5360-3. PubMed ID: 22255549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance brain-computer interface.
    Santhanam G; Ryu SI; Yu BM; Afshar A; Shenoy KV
    Nature; 2006 Jul; 442(7099):195-8. PubMed ID: 16838020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.
    Zander TO; Kothe C
    J Neural Eng; 2011 Apr; 8(2):025005. PubMed ID: 21436512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volitional control of single cortical neurons in a brain-machine interface.
    Moritz CT; Fetz EE
    J Neural Eng; 2011 Apr; 8(2):025017. PubMed ID: 21436531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-computer interfaces: military, neurosurgical, and ethical perspective.
    Kotchetkov IS; Hwang BY; Appelboom G; Kellner CP; Connolly ES
    Neurosurg Focus; 2010 May; 28(5):E25. PubMed ID: 20568942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural mechanisms of brain-computer interface control.
    Halder S; Agorastos D; Veit R; Hammer EM; Lee S; Varkuti B; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2011 Apr; 55(4):1779-90. PubMed ID: 21256234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-machine interfaces: past, present and future.
    Lebedev MA; Nicolelis MA
    Trends Neurosci; 2006 Sep; 29(9):536-46. PubMed ID: 16859758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volitional control of single-electrode high gamma local field potentials by people with paralysis.
    Milekovic T; Bacher D; Sarma AA; Simeral JD; Saab J; Pandarinath C; Yvert B; Sorice BL; Blabe C; Oakley EM; Tringale KR; Eskandar E; Cash SS; Shenoy KV; Henderson JM; Hochberg LR; Donoghue JP
    J Neurophysiol; 2019 Apr; 121(4):1428-1450. PubMed ID: 30785814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to move machines with the mind.
    Green AM; Kalaska JF
    Trends Neurosci; 2011 Feb; 34(2):61-75. PubMed ID: 21176975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain computer interface (BCI) tools developed in a clinical environment.
    Anderson NR; DeVries EM
    Am J Electroneurodiagnostic Technol; 2010 Sep; 50(3):187-98. PubMed ID: 20957974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-computer interfaces for basic neuroscience.
    Batista A
    Handb Clin Neurol; 2020; 168():233-247. PubMed ID: 32164855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.
    Birbaumer N
    Psychophysiology; 2006 Nov; 43(6):517-32. PubMed ID: 17076808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The progress in researches on biocompatibility for direct brain-machine interface].
    Luo P; Xie G; Jiang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1416-8. PubMed ID: 18232506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.
    Grozea C; Voinescu CD; Fazli S
    J Neural Eng; 2011 Apr; 8(2):025008. PubMed ID: 21436526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.