BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17234800)

  • 1. Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study.
    Elbasiouny SM; Mushahwar VK
    J Appl Physiol (1985); 2007 Jul; 103(1):276-86. PubMed ID: 17234800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing the excitability of spinal motoneurons by extracellularly applied electrical fields: insights from computer simulations.
    Elbasiouny SM; Mushahwar VK
    J Appl Physiol (1985); 2007 Nov; 103(5):1824-36. PubMed ID: 17702836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats.
    Li Y; Gorassini MA; Bennett DJ
    J Neurophysiol; 2004 Feb; 91(2):767-83. PubMed ID: 14762149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of input-output models of motoneuron discharge.
    Powers RK; Binder MD
    J Neurophysiol; 1996 Jan; 75(1):367-79. PubMed ID: 8822564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity.
    Wienecke J; Westerdahl AC; Hultborn H; Kiehn O; Ryge J
    J Neurophysiol; 2010 Feb; 103(2):761-78. PubMed ID: 19939961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity.
    Li Y; Li X; Harvey PJ; Bennett DJ
    J Neurophysiol; 2004 Nov; 92(5):2694-703. PubMed ID: 15486423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mono- and polysynaptic drive of oscillatory firing alpha 1 (FF) and alpha 2-motoneurons (FR) in a patient with spinal cord lesion.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():57-74. PubMed ID: 8934197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in synaptic input to motoneurons during partial spinal cord injury.
    Heckman CJ
    Med Sci Sports Exerc; 1994 Dec; 26(12):1480-90. PubMed ID: 7869883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments.
    Duflocq A; Le Bras B; Bullier E; Couraud F; Davenne M
    Mol Cell Neurosci; 2008 Oct; 39(2):180-92. PubMed ID: 18621130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model.
    Tai C; de Groat WC; Roppolo JR
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):415-22. PubMed ID: 16200764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3-³H-aspartic acid.
    Ahmed Z; Wieraszko A
    J Appl Physiol (1985); 2012 May; 112(9):1576-92. PubMed ID: 22362399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity.
    Bennett DJ; Li Y; Harvey PJ; Gorassini M
    J Neurophysiol; 2001 Oct; 86(4):1972-82. PubMed ID: 11600654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in excitability of single human motor axons, related to stochastic properties of nodal sodium channels.
    Hales JP; Lin CS; Bostock H
    J Physiol; 2004 Sep; 559(Pt 3):953-64. PubMed ID: 15272032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced spinal cord microstimulation using conducting polymer-coated carbon microfibers.
    Vara H; Collazos-Castro JE
    Acta Biomater; 2019 May; 90():71-86. PubMed ID: 30904548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurobiological perspective of spasticity as occurs after a spinal cord injury.
    Roy RR; Edgerton VR
    Exp Neurol; 2012 May; 235(1):116-22. PubMed ID: 22342316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase and frequency coordination between neuron firing as an integrative mechanism of human CNS self-organization.
    Schalow G
    Electromyogr Clin Neurophysiol; 2005; 45(6):369-83. PubMed ID: 16315975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury.
    Tator CH; Minassian K; Mushahwar VK
    Handb Clin Neurol; 2012; 109():283-96. PubMed ID: 23098720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of spasticity after spinal cord injury: current techniques and future directions.
    Elbasiouny SM; Moroz D; Bakr MM; Mushahwar VK
    Neurorehabil Neural Repair; 2010 Jan; 24(1):23-33. PubMed ID: 19723923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.