BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17234800)

  • 21. Alteration in axial motoneuronal morphology in the spinal cord injured spastic rat.
    Kitzman P
    Exp Neurol; 2005 Mar; 192(1):100-8. PubMed ID: 15698623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification, oscillatory and alternating oscillatory firing of alpha 1 (FF) and alpha 2-motoneurons (FR) in patients with spinal cord lesion.
    Schalow G; Bersch U; Zäch GA; Warzok R
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():5-56. PubMed ID: 8934196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses.
    Zhang X; Roppolo JR; de Groat WC; Tai C
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1433-6. PubMed ID: 16830949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraspinal microstimulation generates functional movements after spinal-cord injury.
    Saigal R; Renzi C; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):430-40. PubMed ID: 15614999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motoneuron output regulated by ionic channels: a modeling study of motoneuron frequency-current relationships during fictive locomotion.
    Dai Y; Cheng Y; Fedirchuk B; Jordan LM; Chu J
    J Neurophysiol; 2018 Oct; 120(4):1840-1858. PubMed ID: 30044677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitability of the soma in central nervous system neurons.
    Safronov BV; Wolff M; Vogel W
    Biophys J; 2000 Jun; 78(6):2998-3010. PubMed ID: 10827978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of motor function after spinal cord injury: novel insights into spinal shock.
    Boland RA; Lin CS; Engel S; Kiernan MC
    Brain; 2011 Feb; 134(Pt 2):495-505. PubMed ID: 20952380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dissection of the myelinated axon.
    Waxman SG; Ritchie JM
    Ann Neurol; 1993 Feb; 33(2):121-36. PubMed ID: 7679565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.
    Hahm SC; Yoon YW; Kim J
    Neurorehabil Neural Repair; 2015 May; 29(4):370-81. PubMed ID: 25122586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FES-propelled cycling of SCI subjects with highly spastic leg musculature.
    Szecsi J; Schiller M
    NeuroRehabilitation; 2009; 24(3):243-53. PubMed ID: 19458432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical stimulation in treating spasticity resulting from spinal cord injury.
    Bajd T; Gregoric M; Vodovnik L; Benko H
    Arch Phys Med Rehabil; 1985 Aug; 66(8):515-7. PubMed ID: 3875331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The classification and identification of human somatic and parasympathetic nerve fibres including urinary bladder afferents and efferents is preserved following spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2009; 49(6-7):263-86. PubMed ID: 19845099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells.
    Wu SN; Yeh CC; Huang HC; So EC; Lo YC
    Acta Physiol (Oxf); 2012 Oct; 206(2):120-34. PubMed ID: 22533628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excitability properties of normal and demyelinated human motor nerve axons.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2004; 44(3):147-52. PubMed ID: 15125054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output.
    McIntyre CC; Grill WM
    J Neurophysiol; 2002 Oct; 88(4):1592-604. PubMed ID: 12364490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Persistent inward currents in motoneuron dendrites: implications for motor output.
    Heckmann CJ; Gorassini MA; Bennett DJ
    Muscle Nerve; 2005 Feb; 31(2):135-56. PubMed ID: 15736297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passive exercise and fetal spinal cord transplant both help to restore motoneuronal properties after spinal cord transection in rats.
    Beaumont E; Houlé JD; Peterson CA; Gardiner PF
    Muscle Nerve; 2004 Feb; 29(2):234-42. PubMed ID: 14755488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats.
    Petrosyan HA; Hunanyan AS; Alessi V; Schnell L; Levine J; Arvanian VL
    J Neurosci; 2013 Feb; 33(9):4032-43. PubMed ID: 23447612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity.
    Ahmed Z
    J Neurosci; 2014 Jan; 34(5):1701-9. PubMed ID: 24478352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.