These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17234800)

  • 41. A model for the polarization of neurons by extrinsically applied electric fields.
    Tranchina D; Nicholson C
    Biophys J; 1986 Dec; 50(6):1139-56. PubMed ID: 3801574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Threshold fluctuations in an N sodium channel model of the node of Ranvier.
    Rubinstein JT
    Biophys J; 1995 Mar; 68(3):779-85. PubMed ID: 7756544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simulation study of reflex instability in spasticity: origins of clonus.
    Hidler JM; Rymer WZ
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):327-40. PubMed ID: 10498378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Calpain as a new therapeutic target for treating spasticity after a spinal cord injury].
    Plantier V; Brocard F
    Med Sci (Paris); 2017; 33(6-7):629-636. PubMed ID: 28990565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduced motor neuron excitability is an important contributor to weakness in a rat model of sepsis.
    Nardelli P; Vincent JA; Powers R; Cope TC; Rich MM
    Exp Neurol; 2016 Aug; 282():1-8. PubMed ID: 27118372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Motoneuron model of self-sustained firing after spinal cord injury.
    Kurian M; Crook SM; Jung R
    J Comput Neurosci; 2011 Nov; 31(3):625-45. PubMed ID: 21526348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury.
    Mekhael W; Begum S; Samaddar S; Hassan M; Toruno P; Ahmed M; Gorin A; Maisano M; Ayad M; Ahmed Z
    J Physiol; 2019 Apr; 597(8):2201-2223. PubMed ID: 30689208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of some antiepileptic drugs on the repetitive activity of the node of Ranvier.
    Carratú MR; Di Giovanni V; Mitolo-Chieppa D
    Br J Pharmacol; 1983 Jan; 78(1):49-55. PubMed ID: 6600637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spinal cord stimulation for amelioration of spasticity: experimental results.
    Maiman DJ; Mykleburst JB; Barolat-Romana G
    Neurosurgery; 1987 Sep; 21(3):331-3. PubMed ID: 3499582
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On re-excitation of feline motoneurones: its mechanism and consequences.
    Gogan P; Gustafsson B; Jankowska E; Tyc-Dumont S
    J Physiol; 1984 May; 350():81-91. PubMed ID: 6747861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations.
    Dimitrijevic MM; Dimitrijevic MR; Illis LS; Nakajima K; Sharkey PC; Sherwood AM
    Cent Nerv Syst Trauma; 1986; 3(2):129-44. PubMed ID: 3490312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block.
    Yi G; Grill WM
    PLoS Comput Biol; 2020 Jun; 16(6):e1007766. PubMed ID: 32542050
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity.
    Plantier V; Sanchez-Brualla I; Dingu N; Brocard C; Liabeuf S; Gackière F; Brocard F
    Elife; 2019 Dec; 8():. PubMed ID: 31815668
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury.
    Hofstoetter US; McKay WB; Tansey KE; Mayr W; Kern H; Minassian K
    J Spinal Cord Med; 2014 Mar; 37(2):202-11. PubMed ID: 24090290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma.
    Fleidervish IA; Lasser-Ross N; Gutnick MJ; Ross WN
    Nat Neurosci; 2010 Jul; 13(7):852-60. PubMed ID: 20543843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simulation of injury potential compensation by direct current stimulation in rat spinal cord.
    Wang A; Zhang G; Zhang C; Wu C; Song T; Huo X
    Biomed Mater Eng; 2014; 24(6):3693-700. PubMed ID: 25227084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rate of Information Flow Across Layered Neuro-Spike Network in the Spinal Cord.
    Civas M; Akan OB
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):368-377. PubMed ID: 32167905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation.
    Cotel F; Exley R; Cragg SJ; Perrier JF
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4774-9. PubMed ID: 23487756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Effects of Electrical Stimulation Parameters in Managing Spasticity After Spinal Cord Injury: A Systematic Review.
    Bekhet AH; Bochkezanian V; Saab IM; Gorgey AS
    Am J Phys Med Rehabil; 2019 Jun; 98(6):484-499. PubMed ID: 30300228
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury.
    Venugopal S; Hamm TM; Crook SM; Jung R
    J Neurophysiol; 2011 Nov; 106(5):2167-79. PubMed ID: 21775715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.