These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 17234801)
1. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801 [TBL] [Abstract][Full Text] [Related]
2. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. Fernström M; Tonkonogi M; Sahlin K J Physiol; 2004 Feb; 554(Pt 3):755-63. PubMed ID: 14634202 [TBL] [Abstract][Full Text] [Related]
3. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. Anderson EJ; Yamazaki H; Neufer PD J Biol Chem; 2007 Oct; 282(43):31257-66. PubMed ID: 17761668 [TBL] [Abstract][Full Text] [Related]
4. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers. Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial efficiency in rat skeletal muscle: influence of respiration rate, substrate and muscle type. Mogensen M; Sahlin K Acta Physiol Scand; 2005 Nov; 185(3):229-36. PubMed ID: 16218928 [TBL] [Abstract][Full Text] [Related]
6. The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise. Sahlin K; Mogensen M; Bagger M; Fernström M; Pedersen PK Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E223-30. PubMed ID: 16926382 [TBL] [Abstract][Full Text] [Related]
7. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns. Fritzen AJ; Grunnet N; Quistorff B Eur J Appl Physiol; 2007 Dec; 101(6):679-89. PubMed ID: 17717681 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. Tonkonogi M; Walsh B; Svensson M; Sahlin K J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627 [TBL] [Abstract][Full Text] [Related]
10. Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function. Jiang N; Zhang G; Bo H; Qu J; Ma G; Cao D; Wen L; Liu S; Ji LL; Zhang Y Free Radic Biol Med; 2009 Jan; 46(2):138-45. PubMed ID: 18977294 [TBL] [Abstract][Full Text] [Related]
11. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle. Whitfield J; Ludzki A; Heigenhauser GJ; Senden JM; Verdijk LB; van Loon LJ; Spriet LL; Holloway GP J Physiol; 2016 Jan; 594(2):421-35. PubMed ID: 26457670 [TBL] [Abstract][Full Text] [Related]
12. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Jacobs RA; Lundby C J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957 [TBL] [Abstract][Full Text] [Related]
13. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. Roels B; Thomas C; Bentley DJ; Mercier J; Hayot M; Millet G J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498 [TBL] [Abstract][Full Text] [Related]
14. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle. Venditti P; Masullo P; Di Meo S Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise. Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569 [TBL] [Abstract][Full Text] [Related]
17. Effects of cyclosporine A on skeletal muscle mitochondrial respiration and endurance time in rats. Mercier JG; Hokanson JF; Brooks GA Am J Respir Crit Care Med; 1995 May; 151(5):1532-6. PubMed ID: 7735611 [TBL] [Abstract][Full Text] [Related]
18. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. Iaia FM; Hellsten Y; Nielsen JJ; Fernström M; Sahlin K; Bangsbo J J Appl Physiol (1985); 2009 Jan; 106(1):73-80. PubMed ID: 18845781 [TBL] [Abstract][Full Text] [Related]
19. Endurance training decreases the non-linearity in the oxygen uptake-power output relationship in humans. Majerczak J; Korostynski M; Nieckarz Z; Szkutnik Z; Duda K; Zoladz JA Exp Physiol; 2012 Mar; 97(3):386-99. PubMed ID: 22198015 [TBL] [Abstract][Full Text] [Related]
20. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. Bezaire V; Spriet LL; Campbell S; Sabet N; Gerrits M; Bonen A; Harper ME FASEB J; 2005 Jun; 19(8):977-9. PubMed ID: 15814607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]