These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter. Schrauwen P; Hinderling V; Hesselink MK; Schaart G; Kornips E; Saris WH; Westerterp-Plantenga M; Langhans W FASEB J; 2002 Oct; 16(12):1688-90. PubMed ID: 12206997 [TBL] [Abstract][Full Text] [Related]
24. Central leptin activates mitochondrial function and increases heat production in skeletal muscle. Henry BA; Andrews ZB; Rao A; Clarke IJ Endocrinology; 2011 Jul; 152(7):2609-18. PubMed ID: 21558317 [TBL] [Abstract][Full Text] [Related]
25. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise. Miotto PM; Steinberg GR; Holloway GP Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154 [TBL] [Abstract][Full Text] [Related]
26. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. Daussin FN; Zoll J; Ponsot E; Dufour SP; Doutreleau S; Lonsdorfer E; Ventura-Clapier R; Mettauer B; Piquard F; Geny B; Richard R J Appl Physiol (1985); 2008 May; 104(5):1436-41. PubMed ID: 18292295 [TBL] [Abstract][Full Text] [Related]
27. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Larsen S; Danielsen JH; Søndergård SD; Søgaard D; Vigelsoe A; Dybboe R; Skaaby S; Dela F; Helge JW Scand J Med Sci Sports; 2015 Feb; 25(1):e59-69. PubMed ID: 24845952 [TBL] [Abstract][Full Text] [Related]
28. Mitochondrial tissue specificity of substrates utilization in rat cardiac and skeletal muscles. Ponsot E; Zoll J; N'guessan B; Ribera F; Lampert E; Richard R; Veksler V; Ventura-Clapier R; Mettauer B J Cell Physiol; 2005 Jun; 203(3):479-86. PubMed ID: 15521069 [TBL] [Abstract][Full Text] [Related]
29. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Befroy DE; Petersen KF; Dufour S; Mason GF; Rothman DL; Shulman GI Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16701-6. PubMed ID: 18936488 [TBL] [Abstract][Full Text] [Related]
30. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training. Berthon P; Freyssenet D; Chatard JC; Castells J; Mujika I; Geyssant A; Guezennec CY; Denis C Acta Physiol Scand; 1995 Jun; 154(2):269-74. PubMed ID: 7572222 [TBL] [Abstract][Full Text] [Related]
31. Effects of an 8-weeks erythropoietin treatment on mitochondrial and whole body fat oxidation capacity during exercise in healthy males. Guadalupe-Grau A; Plenge U; Helbo S; Kristensen M; Andersen PR; Fago A; Belhage B; Dela F; Helge JW J Sports Sci; 2015; 33(6):570-8. PubMed ID: 25259652 [TBL] [Abstract][Full Text] [Related]
32. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise. Helge JW; Rehrer NJ; Pilegaard H; Manning P; Lucas SJ; Gerrard DF; Cotter JD Acta Physiol (Oxf); 2007 Sep; 191(1):77-86. PubMed ID: 17488246 [TBL] [Abstract][Full Text] [Related]
33. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle. Skovbro M; Boushel R; Hansen CN; Helge JW; Dela F J Appl Physiol (1985); 2011 Jun; 110(6):1607-14. PubMed ID: 21415171 [TBL] [Abstract][Full Text] [Related]
34. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. Leblanc PJ; Howarth KR; Gibala MJ; Heigenhauser GJ J Appl Physiol (1985); 2004 Dec; 97(6):2148-53. PubMed ID: 15220302 [TBL] [Abstract][Full Text] [Related]
35. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279 [TBL] [Abstract][Full Text] [Related]
36. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. Mogensen M; Bagger M; Pedersen PK; Fernström M; Sahlin K J Physiol; 2006 Mar; 571(Pt 3):669-81. PubMed ID: 16423857 [TBL] [Abstract][Full Text] [Related]
37. Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia. Horscroft JA; Burgess SL; Hu Y; Murray AJ PLoS One; 2015; 10(9):e0138564. PubMed ID: 26390043 [TBL] [Abstract][Full Text] [Related]
38. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Rabøl R; Svendsen PF; Skovbro M; Boushel R; Haugaard SB; Schjerling P; Schrauwen P; Hesselink MK; Nilas L; Madsbad S; Dela F Metabolism; 2009 Aug; 58(8):1145-52. PubMed ID: 19454354 [TBL] [Abstract][Full Text] [Related]
39. Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid vs. glucose oxidation. García-Martinez C; Sibille B; Solanes G; Darimont C; Macé K; Villarroya F; Gómez-Foix AM FASEB J; 2001 Sep; 15(11):2033-5. PubMed ID: 11511517 [TBL] [Abstract][Full Text] [Related]