These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1723515)

  • 1. Neuropeptide changes in a primate model (Cebus apella) for tardive dyskinesia.
    Johansson PE; Terenius L; Häggström JE; Gunne L
    Neuroscience; 1990; 37(2):563-7. PubMed ID: 1723515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis.
    Gunne LM; Häggström JE; Sjöquist B
    Nature; 1984 May 24-30; 309(5966):347-9. PubMed ID: 6727989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental tardive dyskinesia.
    Gunne LM; Häggström JE
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):48-50. PubMed ID: 2858481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathophysiology of tardive dyskinesia.
    Gunne LM; Häggström JE
    Psychopharmacology Suppl; 1985; 2():191-3. PubMed ID: 3858799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional changes in 2-deoxyglucose uptake associated with neuroleptic-induced tardive dyskinesia in the Cebus monkey.
    Mitchell IJ; Crossman AR; Liminga U; Andren P; Gunne LM
    Mov Disord; 1992; 7(1):32-7. PubMed ID: 1557064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographic projections of substance P and GABA pathways in the striato- and pallido-nigral system: a biochemical and immunohistochemical study.
    Jessell TM; Emson PC; Paxinos G; Cuello AC
    Brain Res; 1978 Sep; 152(3):487-98. PubMed ID: 356929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of glutamic acid decarboxylase mRNA in striatum and pallidum in an animal model of tardive dyskinesia.
    Delfs JM; Ellison GD; Mercugliano M; Chesselet MF
    Exp Neurol; 1995 Jun; 133(2):175-88. PubMed ID: 7544289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats.
    Engber TM; Susel Z; Kuo S; Gerfen CR; Chase TN
    Brain Res; 1991 Jun; 552(1):113-8. PubMed ID: 1717109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia.
    McCormick SE; Stoessl AJ
    Neuroscience; 2002; 112(4):851-9. PubMed ID: 12088744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete regional distribution of biochemical markers for the dopamine, noradrenaline, serotonin, GABA and acetylcholine systems in the monkey brain (Cebus Apella). Effects of stress.
    Häggström JE; Sjöquist B; Eckernäs SA; Ingvast A; Gunne LM
    Acta Physiol Scand Suppl; 1984; 534():1-27. PubMed ID: 6150601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An animal model for coexisting tardive dyskinesia and tardive parkinsonism: a glutamate hypothesis for tardive dyskinesia.
    Gunne LM; Andrén PE
    Clin Neuropharmacol; 1993 Feb; 16(1):90-5. PubMed ID: 8093682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurobiochemical changes in tardive dyskinesia.
    Gunne LM; Häggström JE; Johansson P; Levin ED; Terenius L
    Encephale; 1988 Sep; 14 Spec No():167-73. PubMed ID: 2463901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra.
    Brownstein MJ; Mroz EA; Tappaz ML; Leeman SE
    Brain Res; 1977 Oct; 135(2):315-23. PubMed ID: 922480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat.
    Carta AR; Frau L; Pinna A; Pontis S; Simola N; Schintu N; Morelli M
    Synapse; 2008 Jul; 62(7):524-33. PubMed ID: 18435422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical demonstration of differential substance P-, met-enkephalin-, and glutamic-acid-decarboxylase-containing cell body and axon distributions in the corpus striatum of the cat.
    Beckstead RM; Kersey KS
    J Comp Neurol; 1985 Feb; 232(4):481-98. PubMed ID: 2579980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia.
    McCormick SE; Stoessl AJ
    Neuroscience; 2003; 119(2):547-55. PubMed ID: 12770567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy.
    Jourdain VA; Morin N; Grégoire L; Morissette M; Di Paolo T
    J Neurosurg; 2015 Dec; 123(6):1383-93. PubMed ID: 25932606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels.
    Bido S; Marti M; Morari M
    J Neurochem; 2011 Sep; 118(6):1043-55. PubMed ID: 21740438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased dopamine metabolism in rat striatum after infusions of substance P into the substantia nigra.
    Waldmeier PC; Kam R; Stöcklin K
    Brain Res; 1978 Dec; 159(1):223-7. PubMed ID: 728796
    [No Abstract]   [Full Text] [Related]  

  • 20. Anatomically distinct output channels of the caudate nucleus and orofacial dyskinesia: critical role of the subcommissural part of the globus pallidus in oral dyskinesia.
    Cools AR; Spooren W; Bezemer R; Cuypers E; Jaspers R; Groenewegen H
    Neuroscience; 1989; 33(3):535-42. PubMed ID: 2561520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.