BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17235378)

  • 1. Binding energies of the proton-bound amino Acid dimers gly.gly, ala.ala, gly.ala, and lys.lys measured by blackbody infrared radiative dissociation.
    Price WD; Schnier PD; Williams ER
    J Phys Chem B; 1997 Jan; 101(4):664-73. PubMed ID: 17235378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding Energies of Proton-Bound Dimers of Imidazole and n-Acetylalanine Methyl Ester Obtained by Blackbody Infrared Radiative Dissociation.
    Jockusch RA; Williams ER
    J Phys Chem A; 1998 Jun; 102(24):4543-50. PubMed ID: 16604163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding energies of protonated betaine complexes: a probe of zwitterion structure in the gas phase.
    Price WD; Jockusch RA; Williams ER
    J Am Chem Soc; 1998 Apr; 120(14):3474-84. PubMed ID: 16543945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water binding energies of [Pb(amino acid-H)H2O]+ complexes determined by blackbody infrared radiative dissociation.
    Burt MB; Decker SG; Fridgen TD
    Phys Chem Chem Phys; 2012 Nov; 14(43):15118-26. PubMed ID: 23041843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blackbody infrared radiative dissociation of bradykinin and its analogues: energetics, dynamics, and evidence for salt-bridge structures in the gas phase.
    Schnier PD; Price WD; Jockusch RA; Williams ER
    J Am Chem Soc; 1996 Jul; 118(30):7178-89. PubMed ID: 16525512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation energetics and mechanisms of leucine enkephalin (M + H)+ and (2M + X)+ ions (X = H, Li, Na, K, and Rb) measured by blackbody infrared radiative dissociation.
    Schnier PD; Price WD; Strittmatter EF; Williams ER
    J Am Soc Mass Spectrom; 1997 Aug; 8(8):771-80. PubMed ID: 16554908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Peptide ions by blackbody radiation: factors that lead to dissociation kinetics in the rapid energy exchange limit.
    Price WD; Williams ER
    J Phys Chem A; 1997 Nov; 101(47):8844-52. PubMed ID: 16604162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycine in a basket: protonated complexes of 1,1,
    Chen Y; Ghasemabadi PG; Bodwell GJ; Demireva M; Fridgen TD
    Phys Chem Chem Phys; 2023 Jun; 25(24):16597-16612. PubMed ID: 37310351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified Multiple-Well Approach for the Master Equation Modeling of Blackbody Infrared Radiative Dissociation of Hydrated Carbonate Radical Anions.
    Salzburger M; Ončák M; van der Linde C; Beyer MK
    J Am Chem Soc; 2022 Nov; 144(47):21485-21493. PubMed ID: 36383735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation energies of deoxyribose nucleotide dimer anions measured using blackbody infrared radiative dissociation.
    Strittmatter EF; Schnier PD; Klassen JS; Williams ER
    J Am Soc Mass Spectrom; 1999 Nov; 10(11):1095-104. PubMed ID: 10536816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and energetic effects in the molecular recognition of amino acids by 18-crown-6.
    Chen Y; Rodgers MT
    J Am Chem Soc; 2012 Apr; 134(13):5863-75. PubMed ID: 22400976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of charge state on fragmentation pathways, dynamics, and activation energies of ubiquitin ions measured by blackbody infrared radiative dissociation.
    Jockusch RA; Schnier PD; Price WD; Strittmatter EF; Demirev PA; Williams ER
    Anal Chem; 1997 Mar; 69(6):1119-26. PubMed ID: 9075403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of heme-globin complexes by blackbody infrared radiative dissociation: molecular specificity in the gas phase?
    Gross DS; Zhao Y; Williams ER
    J Am Soc Mass Spectrom; 1997 May; 8(5):519-24. PubMed ID: 16479269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of activation energies for dissociation of host-guest complexes in the gas phase using low-energy collision induced dissociation.
    Bayat P; Gatineau D; Lesage D; Marhabaie S; Martinez A; Cole RB
    J Mass Spectrom; 2019 May; 54(5):437-448. PubMed ID: 30801903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5-7, M = Mg, Ca, Sr, and Ba.
    Rodriguez-Cruz SE; Jockusch RA; Williams ER
    J Am Chem Soc; 1999 Sep; 121(38):8898-906. PubMed ID: 16429612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the dissociation and conformation of gas-phase methonium ions.
    Gross DS; Williams ER
    Int J Mass Spectrom Ion Process; 1996 Dec; 157-158():305-318. PubMed ID: 16479265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and energetics of electrosprayed uracil(n)Ca2+ clusters (n = 14-4) in the gas phase.
    Gillis EA; Demireva M; Nanda K; Beran G; Williams ER; Fridgen TD
    Phys Chem Chem Phys; 2012 Mar; 14(10):3304-15. PubMed ID: 22139344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Master equation modeling of blackbody infrared radiative dissociation (BIRD) of hydrated peroxycarbonate radical anions.
    Salzburger M; Hütter M; van der Linde C; Ončák M; Beyer MK
    J Chem Phys; 2024 Apr; 160(13):. PubMed ID: 38557850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding energies of water to sodiated valine and structural isomers in the gas phase: the effect of proton affinity on zwitterion stability.
    Lemoff AS; Bush MF; Williams ER
    J Am Chem Soc; 2003 Nov; 125(44):13576-84. PubMed ID: 14583055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications.
    Dunbar RC
    Mass Spectrom Rev; 2004; 23(2):127-58. PubMed ID: 14732935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.